P11164 [BalkanOI 2023] Permutations
思路
先判断是否有解。
即判断区间是否存在三元组 \((p_i,p_j,p_k)(i < j < k)\) 使得 \(p_i > p_j > p_k\);或者二元组 \((p_i,p_j)(i<j)\) 使得 \(p_i > p_j > \min_{k=1}^{L-1} \min_{k=R+1}^{n} \space p_k\)。
贪心的覆盖区间,三元组对于 \(j\) 我们只找最靠右的 \(i\) 和最靠左的 \(k\);二元组对 \(j\) 只找最靠右的 \(i\)。扫描线一遍 \(j\),把权值都挂在 \(i\) 上维护即可。
然后求方案数。
先考虑一个弱化问题:将 \(1\sim n\) 的排列 \(P_n\) 放成最长递减子序列长度至多为二,共有多少种方案。
考虑一种类似维护连续段的转移,把序列按点 \((i,p_i)\) 摊到平面上,称 \(p_{i-1} > p_i < p_{i+1}\) 为一个“谷”。
设 \(f_{i,j}\) 表示放完前 \(i\) 个数,最后一个“谷”在 \(j\) 的方案数。
发现我们新插入数只能是使最后一个“谷”向右移动,或者拼接在段的右端点上,即 \(f_{i,j}\) 会贡献给 \(\sum_{k=j}^{i+1} f_{i+1,k}\)。
在转移状态的平面上看这个方程,发现我们转移的路径是每次从当前层先到下一层,到下一层后可以选择向右转移若干状态或者不动。把这件事看成网格图上走路,每次必须向上走一步,然后可以选择向右走一些格子。每次选择是否向右走,以及向右走几格,对应方案与从 \((1,1)\) 走到 \((n+1,n+1)\) 的路径相对应。当 \(j>i\) 时状态无意义,即不能越过直线 \(y = x\)。
回到原问题。
令 \(mx = \max_{i=L}^{R} \space p_i\)。小于 \(mx\) 的数一定按升序放,而剩下的大于 \(mx\) 的数在小于 \(mx\) 的数放完前需要升序放。
这与我们刚才在网格图上走路的方式很像。
令 \(Len = R-L+1\),考虑共剩下 \(n-Len\) 个数,其中小于 \(mx\) 的有 \(mx-Len\) 个,大于 \(mx\) 的数有 \(n-mx\) 个。
然后像网格图上走路一样刻画放数的过程,走的步数与大于和小于 \(mx\) 的数的个数向对应。即相当于从 \((mx,Len)\) 走到 \((n,n)\) 不越过 \(y=x\)。
按 \(y=x+1\) 对称,反射容斥一下,答案为 \(C_{2n-mx-Len}^{n-Len} - C_{2n-mx-Len}^{n-Len+1}\)。
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<climits>
#include<vector>
#include<queue>
#include<set>
#include<map>
#include<bitset>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
template <typename T>
inline void read(T&x){
int w = 0; x = 0;
char ch = getchar();
while(ch<'0' || ch>'9'){
if(ch=='-') w = 1;
ch = getchar();
}
while(ch>='0' && ch<='9'){
x = (x<<1)+(x<<3)+(ch^48);
ch = getchar();
}
if(w) x = ~x+1;
}
template <typename T,typename...Args>
inline void read(T&t,Args&...args){
read(t); read(args...);
}
template <typename T>
inline T Max(T x,T y){ return (x > y ? x : y); }
template <typename T>
inline T Min(T x,T y){ return (x < y ? x : y); }
template <typename T>
inline T Abs(T x){ return (x < 0 ? ~x+1 : x); }
const int N = 3e5+10,INF = 0x3f3f3f3f;
const ll mod = 1e9+7;
int n,m,a[N];
ll ans[N];
struct G1{
int l,r,id;
inline int operator < (const G1&G){
if(r^G.r) return r < G.r;
return l < G.l;
}
}g1[N];
struct G2{
int l;
}g2[N];
struct Query{
int l,r,id;
inline int operator < (const Query&G) const{
if(r^G.r) return r < G.r;
return l < G.l;
}
}q[N];
int st[N],stop;
struct Tree1{
int minn[N<<2],maxn[N<<2];
Tree1(){
memset(minn,0x3f,sizeof(minn));
}
inline void build(int p,int nl,int nr){
if(nl==nr){
minn[p] = maxn[p] = a[nl];
return ;
}
int mid = (nl+nr) >> 1;
build(p<<1,nl,mid);
build(p<<1|1,mid+1,nr);
minn[p] = Min(minn[p<<1],minn[p<<1|1]);
maxn[p] = Max(maxn[p<<1],maxn[p<<1|1]);
}
inline int query_min(int p,int nl,int nr,int ql,int qr){
if(ql>qr) return INF;
if(ql<=nl && nr<=qr) return minn[p];
int mid = (nl+nr) >> 1;
int res = INF;
if(ql<=mid) res = Min(res,query_min(p<<1,nl,mid,ql,qr));
if(qr>mid) res = Min(res,query_min(p<<1|1,mid+1,nr,ql,qr));
return res;
}
inline int query_max(int p,int nl,int nr,int ql,int qr){
if(ql>qr) return 0;
if(ql<=nl && nr<=qr) return maxn[p];
int mid = (nl+nr) >> 1;
int res = 0;
if(ql<=mid) res = Max(res,query_max(p<<1,nl,mid,ql,qr));
if(qr>mid) res = Max(res,query_max(p<<1|1,mid+1,nr,ql,qr));
return res;
}
}t1;
struct Tree2{
int vis[N<<2],maxn[N<<2];
inline void update_vis(int p,int nl,int nr,int x){
if(nl==nr){
vis[p] = 1;
return ;
}
int mid = (nl+nr) >> 1;
if(x<=mid) update_vis(p<<1,nl,mid,x);
else update_vis(p<<1|1,mid+1,nr,x);
vis[p] = vis[p<<1]|vis[p<<1|1];
}
inline int query_vis(int p,int nl,int nr,int ql,int qr){
if(ql>qr) return 0;
if(ql<=nl && nr<=qr) return vis[p];
int mid = (nl+nr) >> 1;
int res = 0;
if(ql<=mid) res = query_vis(p<<1,nl,mid,ql,qr);
if(res) return res;
if(qr>mid) res = query_vis(p<<1|1,mid+1,nr,ql,qr);
return res;
}
inline void update_max(int p,int nl,int nr,int x,int k){
if(nl==nr){
maxn[p] = Max(maxn[p],k);
return ;
}
int mid = (nl+nr) >> 1;
if(x<=mid) update_max(p<<1,nl,mid,x,k);
else update_max(p<<1|1,mid+1,nr,x,k);
maxn[p] = Max(maxn[p<<1],maxn[p<<1|1]);
}
inline int query_max(int p,int nl,int nr,int ql,int qr){
if(ql>qr) return 0;
if(ql<=nl && nr<=qr) return maxn[p];
int mid = (nl+nr) >> 1;
int res = 0;
if(ql<=mid) res = Max(res,query_max(p<<1,nl,mid,ql,qr));
if(qr>mid) res = Max(res,query_max(p<<1|1,mid+1,nr,ql,qr));
return res;
}
}t2;
ll mul[N<<1],inv[N<<1];
inline ll quick_pow(ll x,ll y){
ll res = 1;
while(y){
if(y&1) (res *= x)%=mod;
(x *= x)%=mod;
y >>= 1;
}
return res;
}
inline ll H(int maxn,int len){
int ta = n-len;
int tb = n-maxn-1;
return (mul[ta+tb+1]*(ta-tb)%mod*inv[tb+1]%mod*inv[ta+1]%mod+mod)%mod;
}
int main(){
// freopen("in.in","r",stdin);
// freopen("out.out","w",stdout);
read(n);
mul[0] = 1;
for(int i=1;i<=n+n;++i) mul[i] = mul[i-1]*i%mod;
inv[n+n] = quick_pow(mul[n+n],mod-2);
for(int i=n+n;i;--i) inv[i-1] = inv[i]*i%mod;
for(int i=1;i<=n;++i){
read(a[i]);
g1[i].id = i;
}
t1.build(1,1,n);
for(int i=1;i<=n;++i){
while(stop && a[i]>a[st[stop]]) --stop;
g1[i].l = st[stop];
st[++stop] = i;
}
stop = 0;
for(int i=n;i;--i){
while(stop && a[i]<a[st[stop]]) --stop;
g1[i].r = st[stop];
st[++stop] = i;
}
stop = 0;
for(int i=1;i<=n;++i){
while(stop && a[i]>a[st[stop]]) --stop;
g2[i].l = st[stop];
st[++stop] = i;
}
read(m);
for(int i=1;i<=m;++i){
read(q[i].l,q[i].r);
q[i].id = i;
}
sort(g1+1,g1+1+n);
sort(q+1,q+1+m);
for(int i=1,nowq=1,nowg1=1;i<=n && nowq<=m;++i){
while(g1[nowg1].r<=i && nowg1<=n){
if(g1[nowg1].l && g1[nowg1].r) t2.update_vis(1,1,n,g1[nowg1].l);
++nowg1;
}
if(g2[i].l) t2.update_max(1,1,n,g2[i].l,a[i]);
while(q[nowq].r<=i && nowq<=m){
if(!t2.query_vis(1,1,n,q[nowq].l,q[nowq].r)){
if(t2.query_max(1,1,n,q[nowq].l,q[nowq].r)<Min(t1.query_min(1,1,n,1,q[nowq].l-1),t1.query_min(1,1,n,q[nowq].r+1,n))){
ans[q[nowq].id] = H(t1.query_max(1,1,n,q[nowq].l,q[nowq].r),i-q[nowq].l+1);
}
}
++nowq;
}
}
for(int i=1;i<=m;++i) printf("%lld\n",ans[i]);
fclose(stdin);
fclose(stdout);
return 0;
}