テレキャスタービーボーイ

CF923E

\(f_{i,j}\) 表示 \(i\) 轮后 \(x=j\) 的概率,有 \(f_{i,j}=\sum\limits_{k=j}^n \dfrac{1}{k+1}f_{i-1,k},f_{0,i}=p_i\)

然后写出 \(f_i\) 的生成函数 \(F(i,x)\),有

\[\begin{aligned}F(i,x)&=\sum\limits_{j=0}^n f_{i,j}x^j\\ &=\sum\limits_{j=0}^n\left(\sum\limits_{k=j}^n \frac{1}{k+1}f_{i-1,k}\right)x^j\\ &=\sum\limits_{k=0}^n \frac 1{k+1}f_{i-1,k}\sum\limits_{j=0}^k x^j\\&=\sum\limits_{k=0}^n\frac 1{k+1}f_{i-1,k}\frac{x^{k+1}-1}{x-1}\\&=\frac 1 {x-1}\sum\limits_{k=0}^nf_{i-1,k}\frac{x^{k+1}-1}{k+1}\end{aligned} \]

现在想把式子统一成 \(x^k\) 的形式,一个想法是利用积分。

\[\begin{aligned}F(i,x)&=\frac{1}{x-1}\sum\limits_{k=0}^n f_{i-1,k}\int_{1}^x x^{k}\mathrm{d}x \\&=\frac{1}{x-1}\int_{1}^x\sum\limits_{k=0}^n f_{i-1,k} x^{k}\mathrm{d}x\\&=\frac 1{x-1}\int_1^{x}F(i-1,x)\mathrm{d}x\end{aligned} \]

\(G(i,x)=F(i,x+1)\),设 \(G(i,x)=\sum\limits_{k=0}^n g_{i,k} x^k\),有

\[\begin{aligned}G(i,x)&=F(i,x+1)\\&=\frac 1{x}\int_1^{x+1}F(i-1,x+1)\mathrm{d}x\\&=\frac 1{x}\int_0^xG(i-1,x)\mathrm{d}x\\&=\frac{1}{x}\int_{0}^x\sum\limits_{k=0}^n g_{i-1,k} x^{k}\mathrm{d}x\\&=\frac{1}{x}\sum\limits_{k=0}^n\frac{g_{i-1,k}}{k+1} x^{k+1}\\&=\sum\limits_{k=0}^n\frac{g_{i-1,k}}{k+1} x^k\end{aligned} \]

所以 \(g_{i,k}=\dfrac{g_{i-1,k}}{k+1}\),即 \(g_{m,k}=\dfrac {g_{0,k}}{(k+1)^m}\)

于是我们只需要完成 \(F(0,x)\to G(0,x)\)\(G(m,x)\to F(m,x)\) 即可。

\[\begin{aligned}G(0,x)&=\sum\limits_{i=0}^n f_{0,i}(x+1)^i=\sum\limits_{i=0}^np_i\sum\limits_{j=0}^i \dbinom{i}{j}x^j\\&=\sum\limits_{j=0}^n\left[\sum\limits_{i=j}^n\dbinom i jp_i \right]x^j\end{aligned} \]

所以 \(g_{0,i}=\sum\limits_{j=i}^n \dbinom j i p_j\)

展开组合数得 \(g_{0,i}=\sum\limits_{j=i}^n \dfrac{j!}{(j-i)!i!}p_j=\dfrac{1}{i!}\sum\limits_{j=i}^n \dfrac{1}{(j-i)!}\cdot j!p_j\)

\(a_i=\dfrac{1}{i!},b_i =i!p_i\),有 \(g_{0,i}=\dfrac 1{i!}\sum\limits_{j-k=i}b_ja_k\),这是差卷积形式,直接 NTT 即可。

同理有 \(g_{m,i}=\sum\limits_{j=i}^n\dbinom j i f_{m,j}\)

二项式反演得 \(f_{m,i}=\sum\limits_{j=i}^n(-1)^{j-i}\dbinom{j}{i}g_{m,j}\)

\(a_i=\dfrac{(-1)^i} {i!},b_i=i!g_{m,i}\),有 \(f_{m,i}=\dfrac{1}{i!}\sum\limits_{j-k=i} b_ja_k\)。同上。

posted @ 2024-02-27 20:31  Terac  阅读(19)  评论(0)    收藏  举报