• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
T Y
博客园    首页    新随笔    联系   管理    订阅  订阅

Radar Installation


Description

Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d. 
We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates. 
  Figure A Sample Input of Radar Installations

Input

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases. 
The input is terminated by a line containing pair of zeros 

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

#include
<iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const int M = 1001; structxy { double l; double r; }p[M]; double min(double a,double b) { return a < b ? a :b; } int d,n; bool cmp(structxy a,structxy b ) { return a.l < b.l; } int main() { double a,b; int icase = 0; while(cin >> n >> d && n && d) { memset(p,0,sizeof(0)); icase++; int sum = 1; bool flag = true; for(int i = 1; i <= n;i++) { cin >>a>>b; if(b > d) { flag = true; } else { p[i].l = a - sqrt(d*d - b*b); p[i].r = a + sqrt(d*d - b*b); } } if(!flag) { cout<<"Case "<<icase<<": -1"<<endl; continue; } else { sort(p+1,p+n+1,cmp); double s = p[1].r; for(int i = 2; i <= n; i++) { if(p[i].l > s) { sum++; s = p[i].r; } else { s = min(s,p[i].r); } } } cout<<"Case "<<icase<<": "<<sum<<endl; cout<<endl; } return 0; }
posted @ 2013-07-27 17:00  T天天T  阅读(211)  评论(0)    收藏  举报
刷新页面返回顶部
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3