Loading

多线程

基本概念

  • 程序(program):一段静态的代码

  • 进程(process):正在运行的一个程序,是一个动态的过程,有它自身的产生、存在和消亡的过程(生命周期)

    • 程序是静态的,进程是动态的
    • 进程作为资源分配的单位,系统在运行时会为每个进程分配不同的内存区域
  • 线程(thread):进程可进一步细化为线程,是一个程序内部的一条执行路径

    • 若一个进程同一时间并行执行多个线程,就是支持多线程的
    • 线程作为调度和执行的单位,每个线程拥有独立的运行栈和程序计数器(pc),线程切换的开销小
    • 一个进程中的多个线程共享相同的内存单元/内存空间地址他们从同一堆中分配对象,可以访问相同的变量和对象。这就使得线程间通信更便捷、高效。但多个线程操作共享的系统资源可能就会带来安全隐患

多线程的创建

一、继承于Thread类

示例

//1. 创建一个继承于Thread类的子类
class MyThread extends Thread {
    //2. 重写Thread类的run()
    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            if(i % 2 == 0){
                System.out.println(Thread.currentThread().getName() + ":" + i);
            }
        }
    }
}


public class ThreadTest {
    public static void main(String[] args) {
        //3. 创建Thread类的子类的对象
        MyThread t1 = new MyThread();
        //4.通过此对象调用start():①启动当前线程 ② 调用当前线程的run()
        t1.start();

        //每个线程都需要创建一个对象
        MyThread t2 = new MyThread();
        t2.start();
        }
    }
}

二、实现Runnable接口

示例

//1. 创建一个实现了Runnable接口的类
class MThread implements Runnable{

    //2. 实现类去实现Runnable中的抽象方法:run()
    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            if(i % 2 == 0){
                System.out.println(Thread.currentThread().getName() + ":" + i);
            }
        }
    }
}


public class ThreadTest1 {
    public static void main(String[] args) {
        //3. 创建实现类的对象
        MThread mThread = new MThread();
        //4. 将此对象作为参数传递到Thread类的构造器中,创建Thread类的对象
        Thread t1 = new Thread(mThread);
        t1.setName("线程1");
        //5. 通过Thread类的对象调用start():① 启动线程 ②调用当前线程的run()-->调用了Runnable类型的target的run()
        t1.start();

        //再启动一个线程
        Thread t2 = new Thread(mThread);
        t2.setName("线程2");
        t2.start();
    }
}

三、实现Callable接口

示例

//1.创建一个实现Callable的实现类
class NumThread implements Callable{
//2.实现call方法,将此线程需要执行的操作声明在call()中
@Override
public Object call() throws Exception {
    int sum = 0;
    for (int i = 1; i <= 100; i++) {
        if(i % 2 == 0){
            System.out.println(i);
            sum += i;
        }
    }
    return sum;
}
}


public class ThreadNew {
    public static void main(String[] args) {
        //3.创建Callable接口实现类的对象
        NumThread numThread = new NumThread();
        //4.将此Callable接口实现类的对象作为传递到FutureTask构造器中,创建FutureTask的对象
        FutureTask futureTask = new FutureTask(numThread);
        //5.将FutureTask的对象作为参数传递到Thread类的构造器中,创建Thread对象,并调用start()
        new Thread(futureTask).start();

        try {
            //6.获取Callable中call方法的返回值
            //get()返回值即为FutureTask构造器参数Callable实现类重写的call()的返回值。
            Object sum = futureTask.get();
            System.out.println("总和为:" + sum);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
    }
}

四、使用线程池

示例

class NumberThread implements Runnable{
    @Override
    public void run() {
        for(int i = 0;i <= 100;i++){
            if(i % 2 == 0){
                System.out.println(Thread.currentThread().getName() + ": " + i);
            }
        }
    }
}

class NumberThread1 implements Runnable{
    @Override
    public void run() {
        for(int i = 0;i <= 100;i++){
            if(i % 2 != 0){
                System.out.println(Thread.currentThread().getName() + ": " + i);
            }
        }
    }
}

public class ThreadPool {
    public static void main(String[] args) {
        //1. 提供指定线程数量的线程池
        ExecutorService service = Executors.newFixedThreadPool(10);
        ThreadPoolExecutor service1 = (ThreadPoolExecutor) service;
        //设置线程池的属性

		service1.setCorePoolSize(15);
		service1.setKeepAliveTime(10);

        //2.执行指定的线程的操作。需要提供实现Runnable接口或Callable接口实现类的对象
        service.execute(new NumberThread());//适合适用于Runnable
        service.execute(new NumberThread1());//适合适用于Runnable

//        service.submit(Callable callable);//适合使用于Callable
        //3.关闭连接池
        service.shutdown();
    }
}

线程安全

一、同步代码块

synchronized(同步监视器){
    //需要被同步的代码
}

说明:

  1. 操作共享数据的代码,即为需要被同步的代码。 -->不能包含代码多了,也不能包含代码少了。

  2. 共享数据:多个线程共同操作的变量。

  3. 同步监视器,俗称:锁。任何一个类的对象,都可以充当锁。

    多个线程必须要共用同一把锁。

class Window1 implements Runnable{
    private int ticket = 100;
    @Override
    public void run() {
        while(true){
            //同步代码块
            synchronized (this){//此时的this:唯一的Window1的对象  
                if (ticket > 0) {
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println(Thread.currentThread().getName()+ticket);
                    ticket--;
                } else {
                    break;
                }
            }
        }
    }
}


public class WindowTest1 {
    public static void main(String[] args) {
        Window1 w = new Window1();
        Thread t1 = new Thread(w);
        Thread t2 = new Thread(w);
        t1.setName("窗口1");
        t2.setName("窗口2");
        t1.start();
        t2.start();
    }
}

二、同步方法

class Window1 implements Runnable{
    private int ticket = 100;
    @Override
    public void run() {
        while(true){
            ticketTest();
        }
    }
    //同步方法
    public synchronized void ticketTest(){
            if (ticket > 0) {
                try {
                    Thread.sleep(100);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(Thread.currentThread().getName()+ticket);
                ticket--;
            }
    }
}

三、Lock锁

class Window implements Runnable{
    private int ticket = 100;
    //1.实例化ReentrantLock
    private ReentrantLock lock = new ReentrantLock();
    @Override
    public void run() {
        while(true){
            try{
                //2.调用锁定方法lock()
                lock.lock();
                if(ticket > 0){
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println(Thread.currentThread().getName()+ ticket);
                    ticket--;
                }else{
                    break;
                }
            }finally {		//finally一定会执行
                //3.调用解锁方法:unlock()
                lock.unlock();
            }
        }
    }
}

常用方法

  • start():启动当前线程;调用当前线程的run()
  • run(): 通常需要重写Thread类中的此方法,将创建的线程要执行的操作声明在此方法中
  • currentThread():静态方法,返回执行当前代码的线程
  • getName():获取当前线程的名字
  • setName():设置当前线程的名字
  • yield():释放当前cpu的执行权
  • join():在线程a中调用线程b的join(),此时线程a就进入阻塞状态,直到线程b完全执行完以后,线程a才结束阻塞状态
  • stop():已过时。当执行此方法时,强制结束当前线程
  • sleep(long millitime):让当前线程“睡眠”指定的millitime毫秒。在指定的millitime毫秒时间内,当前线程是阻塞状态
  • isAlive():判断当前线程是否存活
  • wait():一旦执行此方法,当前线程就进入阻塞状态,并释放同步监视器
  • notify():一旦执行此方法,就会唤醒被wait的一个线程。如果有多个线程被wait,就唤醒优先级高的那个
  • notifyAll():一旦执行此方法,就会唤醒所有被wait的线程
posted @ 2021-05-24 22:40  北兢王  阅读(49)  评论(0)    收藏  举报