猫眼电影之哪吒数据爬取、数据分析
首先我们找到网站的url = "https://maoyan.com/films/1211270",找到评论区看看网友的吐槽,如下

F12打开看看有没有评论信息,我们发现还是有信息的。

但是现在的问题时,我们好像只有这几条评论信息,完全不支持我们的分析呀,我们只能另谋出路了;

f12中由手机测试功能,打开刷新页面,向下滚动看见查看好几十万的评论数据,点击进入后,在network中会看见url = "http://m.maoyan.com/review/v2/comments.json?movieId=1211270&userId=-1&offset=15&limit=15&ts=1568600356382&type=3" api,有这个的时候我们就可以搞事情了。


但是随着爬取,还是不能获取完整的信息,百度、谷歌、必应一下,我们通过时间段获取信息,这样我们不会被猫眼给墙掉,所以我们使用该url="http://m.maoyan.com/mmdb/comments/movie/1211270.json?_v_=yes&offset=0&startTime="
效果如下:

开始构造爬虫代码:
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 # author:albert time:2019/9/3
4 import requests,json,time,csv
5 from fake_useragent import UserAgent #获取userAgent
6 from datetime import datetime,timedelta
7
8 def get_content(url):
9 '''获取api信息的网页源代码'''
10 ua = UserAgent().random
11 try:
12 data = requests.get(url,headers={'User-Agent':ua},timeout=3 ).text
13 return data
14 except:
15 pass
16
17 def Process_data(html):
18 '''对数据内容的获取'''
19 data_set_list = []
20 #json格式化
21 data_list = json.loads(html)['cmts']
22 for data in data_list:
23 data_set = [data['id'],data['nickName'],data['userLevel'],data['cityName'],data['content'],data['score'],data['startTime']]
24 data_set_list.append(data_set)
25 return data_set_list
26
27 if __name__ == '__main__':
28 start_time = start_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S') # 获取当前时间,从当前时间向前获取
29 # print(start_time)
30 end_time = '2019-07-26 08:00:00'
31
32 # print(end_time)
33 while start_time > str(end_time):
34 #构造url
35 url = 'http://m.maoyan.com/mmdb/comments/movie/1211270.json?_v_=yes&offset=0&startTime=' + start_time.replace(
36 ' ', '%20')
37 print('........')
38 try:
39 html = get_content(url)
40 except Exception as e:
41 time.sleep(0.5)
42 html = get_content(url)
43 else:
44 time.sleep(1)
45 comments = Process_data(html)
46 # print(comments[14][-1])
47 if comments:
48 start_time = comments[14][-1]
49 start_time = datetime.strptime(start_time, '%Y-%m-%d %H:%M:%S') + timedelta(seconds=-1)
50 # print(start_time)
51 start_time = datetime.strftime(start_time,'%Y-%m-%d %H:%M:%S')
52 print(comments)
53 #保存数据为csv
54 with open("comments_1.csv", "a", encoding='utf-8',newline='') as csvfile:
55 writer = csv.writer(csvfile)
56 writer.writerows(comments)
57
-----------------------------------数据分析部分-----------------------------------
我们手里有接近两万的数据后开始进行数据分析阶段:
工具:jupyter、库方法:pyecharts v1.0===> pyecharts 库向下不兼容,所以我们需要使用新的方式(链式结构)实现:
我们先来分析一下哪吒的等级星图,使用pandas 实现分组求和,正对1-5星的数据:
1 from pyecharts import options as opts
2 from pyecharts.globals import SymbolType
3 from pyecharts.charts import Bar,Pie,Page,WordCloud
4 from pyecharts.globals import ThemeType,SymbolType
5 import numpy
6 import pandas as pd
7
8 df = pd.read_csv('comments_1.csv',names=["id","nickName","userLevel","cityName","score","startTime"])
9 attr = ["一星", "二星", "三星", "四星", "五星"]
10 score = df.groupby("score").size() # 分组求和
11 value = [
12 score.iloc[0] + score.iloc[1]+score.iloc[1],
13 score.iloc[3] + score.iloc[4],
14 score.iloc[5] + score.iloc[6],
15 score.iloc[7] + score.iloc[8],
16 score.iloc[9] + score.iloc[10],
17 ]
18 # 饼图分析
19 # 暂时处理,不能直接调用value中的数据
20 attr = ["一星", "二星", "三星", "四星", "五星"]
21 value = [286, 43, 175, 764, 10101]
22
23 pie = (
24 Pie(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
25 .add('',[list(z) for z in zip(attr, value)])
26 .set_global_opts(title_opts=opts.TitleOpts(title='哪吒等级分析'))
27 .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{c}"))
28 )
29 pie.render_notebook()
实现效果:
然后进行词云分析:
1 import jieba
2 import matplotlib.pyplot as plt #生成图形
3 from wordcloud import WordCloud,STOPWORDS,ImageColorGenerator
4
5 df = pd.read_csv("comments_1.csv",names =["id","nickName","userLevel","cityName","content","score","startTime"])
6
7 comments = df["content"].tolist()
8 # comments
9 df
10
11 # 设置分词
12 comment_after_split = jieba.cut(str(comments), cut_all=False) # 非全模式分词,cut_all=false
13 words = " ".join(comment_after_split) # 以空格进行拼接
14
15 stopwords = STOPWORDS.copy()
16 stopwords.update({"电影","最后","就是","不过","这个","一个","感觉","这部","虽然","不是","真的","觉得","还是","但是"})
17
18 bg_image = plt.imread('bg.jpg')
19 #生成
20 wc=WordCloud(
21 width=1024,
22 height=768,
23 background_color="white",
24 max_words=200,
25 mask=bg_image, #设置图片的背景
26 stopwords=stopwords,
27 max_font_size=200,
28 random_state=50,
29 font_path='C:/Windows/Fonts/simkai.ttf' #中文处理,用系统自带的字体
30 ).generate(words)
31
32 #产生背景图片,基于彩色图像的颜色生成器
33 image_colors=ImageColorGenerator(bg_image)
34 #开始画图
35 plt.imshow(wc.recolor(color_func=image_colors))
36 #为背景图去掉坐标轴
37 plt.axis("off")
38 #保存云图
39 plt.show()
40 wc.to_file("评价.png")
效果如下:



浙公网安备 33010602011771号