多项式专题

除法、开根、exp、多点插值、快速求值、拉格朗日插值的板子还没有整理,重心拉格朗日插值法还不会,正在补坑中。

\(\color{red}{\text{约定:}}\)

\(1.F(x)\)表示一个普通的项数为\(2\)的幂次多项式,\(F_D(x)\)是他的点值表示。

\(2.w\)代表单位根,\(w_m\)表示\(m\)次单位根。

\(3.A\)代表一个数列。

\(4.g\)表示原根。
\(5.F^{(z)}(x)\)表示\(F(x)\)\(z\)次导数。

\(\color{red}{\text{多项式系列之零 底层知识:}}\)

多项式的表示:

多项式可以通过系数数列\(A\)表示,\(a_i\)\(x_i\)的系数。

多项式可以通过点值表示,对于一个\(n\)次多项式,取\(n\)种不同的\(x\)取值带入\(F(x)\),得到\(n\)个值,在取相同这\(n\)个数的意义下,可以唯一的表示这个多项式。

多项式乘法:

定义\(F(x)\oplus G(x)=\sum_{i=0}^n\sum_{j=0}^i f_ix^i\times g_{j-i}x^{j-i}\),在系数表示之下相乘复杂度\(\Theta(n^2)\),在点值表示之下\(F(x)\oplus G(x)=A_f\times A_g=\sum_{i=1}^n a_{fi}\times a_{gi}\),复杂度\(\Theta(n)\)

复数:

复数一般情况下可以表示成\(a+bi\)的形式,\(a,b\)是实数,\(i=\sqrt{-1}\)

复数的幅角:平面直角坐标系上点\((a,b)\)所在的任意角。

复数的模长:\(\sqrt{a^2+b^2}\)

两个复数相乘:\((a+bi)\times(c+di)=ac+adi+bci-bd=(ac-bd)+(ad+bc)i\),复数相乘之后,模长等于原来两个复数的模长的乘积,幅角的角度等于原来两个幅角的和。

复数可以加减乘除,可以和实数一样的带入\(F(x)\)

单位根:

在单位圆上从\(w_m^0=(1,0)\)开始平均取\(m\)个点,从\(0\)开始编号,分别是\(w_m^0,w_m^1,w_m^2,w_m^3\cdots w_m^{m-1}\)

画图观察可得:

\(1.w_m^k\;=(cos(\frac k m 2\pi),sin(\frac k m 2\pi))\)所代表的复数

\(2.w_m^{-k}=(cos(\frac {-k} n 2\pi),sin(\frac {-k} n 2\pi))\)所代表的复数

\(3.w_m^m\;=w_m^0=(1,0)\)

\(4.w_m^m\;=-w_m^{\frac m 2}\)

\(5.w_{2m}^{2k}\;=w_m^k\)

\(6.w_m^{k+\frac m 2}\!=-w_m^k\)

DFT&IDFT:

科学的数学函数意义上DFT是讲一个函数转化成三角函数的加减乘除的形式,三角函数的系数是原函数系数与点值之间的变换规律。IDFT是DFT的逆变换。

原根:

(NTT用)

\(1.\)什么是\(g\):在\(mod~p\)意义下\(g^i(i\in[0,p-1])\)互不相同,即\(g\)可以张成整个\(mod~p\)下的域。

\(2.g\)存在的条件:\(p=2,4,q^a,2q^a\)\(q\)是奇素数。

\(3.\)如何求\(g\):把\(\phi(p)\)进行质因数分解\(\phi(p)=\prod p_i^{a_i}\),如果对于任意的\(p_i\),总有\(g^{\frac {\phi(p)} {p_i}}\neq 1(mod~p)\),暴力枚举即可。

CRT合并:

(NTT用)

求解\({\begin{cases}x\equiv a_1 (mod~p_1)\\x\equiv a_2 (mod~p_2)\end{cases}},\gcd(p_1,p_2)=1\)

\(x\equiv a_1 (mod~p_1)\),得

\[\begin{align*} x-p_1y&=a_1\\ x&=a_1+p_1y \end{align*}\]

带入二式,得

\[\begin{align*} a_1+p_1y&\equiv a_2(mod~p_2)\\ p_1y&\equiv a_2-a_1(mod~p_2) \end{align*}\]

\(\gcd(p1,p2)==1\),用逆元直接除便可;否则通过\(exgcd\)可求得\(y\),若无解则方程组无解。
最后\(x=p_1y+a_1(mod~p_1p_2)\)

泰勒展开:

(牛顿迭代用)

简单来说,\(F(x)\)\(x_0\)处展开就是

\[F(x)=\sum_{i=0}^{\infty}\frac{F^{(i)}(x_0)}{i!}(x-x_0)^i \]

\[\color{red}{\text{咕}}\color{green}{\text{咕}}\color{red}{\text{咕}}\color{green}{\text{咕}}\color{red}{\text{咕}}\color{green}{\text{咕}}\color{red}{\text{咕}}\color{green}{\text{咕}}\color{red}{\text{咕}}\color{green}{\text{咕}}\color{red}{\text{咕}}\color{green}{\text{咕}}\color{red}{\text{咕}}\color{green}{\text{咕}}\color{red}{\text{咕}}\color{green}{\text{咕}} \]

牛顿迭代:

(开根、exp用)

牛顿迭代是用来求解零点问题的一种方法。
已知\(G(z)\) (这是一个函数,如\(G(z)=z^2-H(x)\)那么我们就是对\(H(x)\)开根) 求\(G(F(x))\equiv 0(mod\;x^n)\)\(F(x)\)。我们尝试递归求解。
\(1.\)结束位置
\(n==1\)时,\(G(F(x))\equiv0(mod\;x)\)直接求解即可,与\(G(x)\)的具体形式有关。
\(2.\)转移
假设我们已经得知\(G(J(x))\equiv0(mod\;x^{\lceil\frac n 2\rceil})\)
我们运用泰勒展开把\(G(F(x))\)\(J(x)\)处展开,得

\[G(F(x))\equiv\sum_i\frac{G^{(i)}(J(x))}{i!}(F(x)-J(x))^i\qquad(mod\;x^n) \]

由于\(F(x)\)\(J(x)\)的前\(\lceil\frac n 2\rceil\)相同,所以\(F(x)-J(x)\)的最低非零项大于\(\lceil\frac n 2\rceil\),所以\((F(x)-J(x))^2\)的最低非零项大于\(2\lceil\frac n 2\rceil\)取模后为\(0\)

\[\begin{align*} G(F(x))&\equiv G(J(x))+G^{(1)}(J(x))(F(x)-J(x))&(mod\;x^n)\\ F(x)&\equiv\frac{G(F(x))-G(J(x))}{G^{(1)}(J(x))}+J(x)&(mod\;x^n) \end{align*}\]

由于\(G(F(x))\equiv 0\;(mod\;x^n):\)

\[F(x)\equiv-\frac{G(J(x))}{G^{(1)}(J(x))}+J(x)\quad(mod\;x^n) \]

拉格朗日插值法:

(多项式快速插值用)

\(0.\)问题描述:
给定点集\(X=\{(x_0,y_0),(x_1,y_1)\cdots\}\),求一个函数\(F(x)\),使得\(\forall x_i,F(x_i)=y_i\)

\(1.\)朴素的拉格朗日插值法:

构造函数\(L_i(x)=\prod_{i\ne j}\frac{x-x_j}{x_i-x_j}\)

\(x=x_i\)时,\(L_i(x)=1\)

\(x\in X,x\ne x_i\)时,\(L_i(x)=0\)

这样,\(F(x)=\sum_{i}L_i(x)\times y_i\)

复杂度\(\Theta(n^2)\)

\(2.\)重心拉格朗日插值法:

在朴素拉格朗日插值法中,如果我们新插入一个节点,修改的复杂度是\(\Theta(n^2)\)的,因为每个函数都要修改,而函数的修改要先减去它再修改再加回来,加减的复杂度是\(\Theta(n)\)的。

我们推一下式子:

\[\begin{align*} F(x)&=\sum_{i}L_i(x)\times y_i\\ &=\sum_{i}y_i\prod_{i\ne j}\frac{x-x_j}{x_i-x_j}\\ &=\sum_{i}\frac{\prod_{j}x-x_j}{x-x_i}\prod_{i\ne j}\frac{y_i}{x_i-x_j}\\ \end{align*}\]

\(w_i=\prod_{i\ne j}\frac{1}{x_i-x_j},l(x)=\prod_jx-x_j\)

\[\begin{align*} F(x)&=\sum_i\frac{l(x)w_i}{x-x_i}y_i\\ &=l(x)\sum_i\frac{w_i}{x-x_i}y_i \end{align*}\]

修改时,我们只需要

\(\color{red}{\text{多项式全集之一 FFT:}}\)

什么是FFT:

FFT是利用DFT的特殊性质,把\(w\)带入\(x\)从而\(\Theta(nlogn)\)求一个系数多项式的点值表示,所以叫FDFT。

\(w\)的具体应用:

\(1.\)可以方便的IDFT:

\(F(x)\)的系数是\(A\),在\(w_m\)的DFT下点值是\(B\)\(G(x)\)的系数是\(B\),在\(w_m^{-1}\)的DFT下点值是\(C\)

\[\begin{align*} c_k&=\sum_{i=0}^{m-1}b_iw_m^{-ki}\\ &=\sum_{i=0}^{m-1}(\sum_{j=0}^{m-1}a_jw_m^{ji})w_m^{-ki}\\ &=\sum_{j=0}^{m-1}a_j\sum_{i=0}^{m-1}w_m^{(j-k)i} \end{align*}\]

\(j-k=0\)\(\sum_{i=0}^{m-1}w_m^{(j-k)i}=m\),否则根据等比数列求和公式得

\[\frac{w_m^{(j-k)m}-1}{w_m^{j-k}-1}=\frac{w_m^{m(j-k)}-1}{w_m^{j-k}-1}=\frac{1-1}{w_m^{j-k}-1}=0 \]

由此可得:\(c_k=m\times a_k\)\(a_k=\frac{c_k}{m}\)

综上所述,对于点值取的\(w\)相反数做DFT再除以\(m\)可得到系数。

\(2.\)可以快速的DFT:

直接将\(w\)带入多项式做DFT需要复杂度\(\Theta(n^2)\),我们利用\(w\)的性质优化:

\(F(x)\)按照奇偶分裂,\(F(x)=(a_0x^0+a_2x^2+a_4x^4+a_6x^6\cdots)+(a_1x^1+a_3x^3+a_5x^5+a_7x^7\cdots)\)

我们令

\[\begin{align*} F_0(x)&=a_0x^0+a_2x^1+a_4x^2+a_6x^3\cdots+a_{m-2}x^{\frac m 2}\\ F_1(x)&=a_1x^0+a_3x^1+a_5x^2+a_6x^3\cdots+a_{m-1}x^{\frac m 2-1} \end{align*}\]

我们可以发现\(F(x)=F_0(x^2)+xF_1(x^2)\)

现在我们把\(w_m\)带入,令\(k<\frac m 2\)

\[\begin{align*} F(w_m^k)&=F_0(w_m^{2k})+w_m^kF_1(w_m^{2k})\\ &=F_0(w_{\frac m 2}^{k})+w_m^kF_1(w_{\frac m 2}^{k})\\ F(w_m^{k+\frac m 2})&=F_0(w_m^{2k+m})+w_m^{k+\frac m 2}F_1(w_m^{2k+m})\\ &=F_0(w_{\frac m 2}^{k} )-w_m^{k}F_1(w_{\frac m 2}^{k}) \end{align*}\]

我们知道取\(w_{\frac m 2}\)时,\(A_0,A_1\)的取值,就可以算出\(A(w_m)\),而\(A_0,A_1\)的长度都为\(A\)的一半,所以可以递归计算。

非递归优化FFT:

\(1.\)优化原理:

画图可知,递归版FFT最底层结束状态第\(i\)个位置的项是\(i\)二进制翻转后的结果。我们可以\(\Theta(n)\)的得到最底层的结果,然后向上模拟回溯合并即可。

\(2.\)蝴蝶变换:

由上述式子:

\[\begin{align*} F(w_m^k)&=F_0(w_{\frac m 2}^{k})+w_m^kF_1(w_{\frac m 2}^{k})\\ F(w_m^{k+\frac m 2})&=F_0(w_{\frac m 2}^{k} )-w_m^{k}F_1(w_{\frac m 2}^{k}) \end{align*}\]

可得在迭代时\(w_m^k\)\(w_m^{k+\frac m 2}\)都只与\(w_{\frac m 2}^k,w_{\frac m 2}^{k+\frac m 2}\)有关,所以我们可以用临时变量记录下一层的两个信息向上迭代。

共轭复数优化FFT:

\(1.\)优化原理:

(在DFT时)

\[\begin{align*} D(x)=A(x)+iB(x)\\ E(x)=A(x)-iB(x) \end{align*}\]

那么

\[\begin{align*} E_D(x)&=conj(D_D(m-x))\\ A_D(x)&=\frac{D_D(x)+E_D(x)} 2\\ &=\frac{D_D(x)+conj(D_D(m-x))} 2\\ B_D(x)&=\frac{D_D(x)-E_D(x)} {2i}\\ &=-i\frac{D_D(x)-conj(D_D(m-x))} 2 \end{align*}\]

\(2.\)证明:

\(step~1\)

\[\begin{align*} D_D(w_m^k)&=A_D(w_m^k)+iB_D(w_m^k)\\ D_D(w_m^k)&=\sum_{j=0}^{m-1}a_jw_m^{jk}+ib_jw_m^{jk}\\ D_D(w_m^k)&=\sum_{j=0}^{m-1}(a_j+ib_j)w_m^{jk} \end{align*}\]

\(step~2\):为方便起见,我们用\(X\)代替\(\frac{2\pi j k} {m}\)

\[\begin{align*} E_D(w_m^k)&=A_D(w_m^k)-iB_D(w_m^k)\\ &=\sum_{j=0}^{m-1}a_jw_m^{jk}-ib_jw_m^{jk}\\ &=\sum_{j=0}^{m-1}(a_j-ib_j)w_m^{jk}\\ &=\sum_{j=0}^{m-1}(a_j-ib_j)(cosX+isinX)\\ &=\sum_{j=0}^{m-1}(a_jcosX+b_jsinX)+i(a_jsinX-b_jcosX)\\ &=conj\big(\sum_{j=0}^{m-1}(a_jcosX+b_jsinX)-i(a_jsinX-b_jcosX)\big)\\ &=conj\big(\sum_{j=0}^{m-1}(a_jcosX+b_jsinX)-i(a_jsinX-b_jcosX)\big)\\ &=conj\big(\sum_{j=0}^{m-1}(a_jcos(-X)-b_jsin(-X))+i(a_jsin(-X)+b_jcos(-X))\big)\\ &=conj\big(\sum_{j=0}^{m-1}(a_j+ib_j)(cos(-X)+isin(-X)))\big)\\ &=conj\big(\sum_{j=0}^{m-1}(a_j+ib_j)w_m^{-jk}\big)\\ &=conj\big(\sum_{j=0}^{m-1}(a_j+ib_j)w_m^{jm-jk}\big)=conj(D_D(w_m^{m-k}))\\ \end{align*}\]

而在IDFT时,我们需要

\[\begin{align*} D_D(w_m^{-k})&=\sum_{j=0}^{m-1}(a_j+ib_j)w_m^{-jk}\\ E_D(w_m^{-k})&=conj\big(\sum_{j=0}^{m-1}(a_j+ib_j)w_m^{jk}\big)=conj(D_D(w_m^{k})) \end{align*}\]

数论优化FFT(NTT):

\(g^{\frac {p-1} m}\)\(w_m\)的共性:

\(1.(g^{\frac {p-1} m})^k\)\(w_m^k\)都互不相同\((k\in[0,m-1])\)

\(2.(g^{\frac {p-1} m})^m=g^{p-1}=1\)\(w_m^m=1\)

\(3.(g^{\frac {p-1} m})^{\frac m 2}=g^{\frac{p-1} 2}=\sqrt{g^{p-1}}\),由于原根的互不相同,\((g^{\frac {p-1} m})^{\frac m 2}=-1=-g^{p-1}=-(g^{\frac {p-1} m})^m\)\(w_m^m=-w_m^{\frac m 2}\)

\(4.(g^{\frac {p-1} {2m}})^{2k}=(g^{\frac {p-1} {m}})^{k}\)\(w_{2m}^{2k}=w_m^k\)

\(5.(g^{\frac {p-1} {m}})^{k+\frac m 2}=(g^{\frac {p-1} {m}})^{k}\times (g^{\frac {p-1} {m}})^{\frac m 2}=-(g^{\frac {p-1} {m}})^{k}\)\(w_m^{k+\frac m 2}=-w_m^k\)

因为有这些共性,所以\(g^{\frac {p-1} m}\)可以代替\(w_m\)

喜闻乐见的模板:

FFT模板(共轭优化)

namespace FFT{
	const double pi = acos(-1);
	struct cp{
		double x, y;
		cp() {x = y = 0;}
		cp(double X,double Y) {x = X; y = Y; }
		cp conj() {return (cp) {x, -y};}
	}a[3000005], b[3000005], c[3000005], I(0, 1), d[3000005];
	 
	cp operator+ (const cp &a, const cp &b) {return (cp){a.x + b.x, a.y + b.y}; }
	cp operator- (const cp &a, const cp &b) {return (cp){a.x - b.x, a.y - b.y}; }
	cp operator* (const cp &a, const cp &b) {return (cp){a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x};}
	cp operator* (const cp &a, double b) {return (cp){a.x * b, a.y * b};}
	cp operator/ (const cp &a, double b) {return (cp){a.x / b, a.y / b};}
	struct p_l_e{
		int wz[3000005];
		void FFT(cp *a, int N, int op) {
			for(int i = 0; i < N; i++)
				if (i<wz[i]) swap(a[i],a[wz[i]]);
			for(int le = 2; le <= N; le <<= 1) {
				int mid = le >> 1;
				for(int i = 0; i < N; i += le) {
					cp x, y, w = (cp) {1, 0};
					cp wn = (cp){cos(op * pi / mid), sin(op * pi / mid)};
					for(int j = 0 ; j < mid; j++) {
						x = a[i + j]; y = a[i + j + mid] * w;
						a[i + j] = x + y;
						a[i + j + mid] = x - y;
						w = w * wn;
					}
				}
			}
		}
		void D_FFT(cp *a, cp *b, int N, int op){
			for(int i = 0; i < N; i++)	d[i] = a[i] + I * b[i];
			FFT(d, N, op);
			d[N] = d[0];
			for(int i = 0; i < N; i++){
				a[i] = (d[i] + d[N - i].conj()) / 2;
				b[i] = I * (-1) * (d[i] - d[N - i].conj()) / 2;
			}
			d[N] = cp(0, 0);
		}
		void mult(cp *a, cp *b, cp *c, int M){
			int N = 1, len = 0;
			while(N < M) N <<= 1, len++;
			for(int i = 0; i < N; i++)
				wz[i] = (wz[i >> 1] >> 1) | ((i & 1) << (len - 1));
			D_FFT(a, b, N, 1);
			for(int i = 0; i < N; i++)	c[i] = a[i] * b[i];
			FFT(c, N, -1);
			for(int i = 0; i < N; i++)	c[i].x = c[i].x / N;
		}
	}PLE;
	int n, m;
	void main() {
		scanf("%d%d", &n, &m); n++; m++;
		for(int i = 0; i < n; i++) scanf("%lf", &a[i].x);
		for(int i = 0; i < m; i++) scanf("%lf", &b[i].x);
		PLE.mult(a, b, c, n + m - 1); 
		for(int i = 0; i < n + m - 1; i++)	printf("%d ", (int)round(c[i].x));
		return;
	}
}

NTT模板:

namespace NTT{
	typedef long long LL;
	const int mod = 998244353;
	const int g = 3;
	LL a[3000005], b[3000005], c[3000005];
	int n, m;
	LL qpow(LL a, LL b){
		LL ans = 1;
		while(b){
			if(b & 1)	ans = ans * a % mod;
			a = a * a % mod;
			b >>= 1;
		}
		return ans;
	}
	struct p_l_e{
		int wz[3000005];
		void NTT(LL *a, int N, int op) {
			for(int i = 0; i < N; i++) 
				if(i < wz[i]) swap(a[i], a[wz[i]]);
			for(int le = 2; le <= N; le <<= 1) {
				int mid = le >> 1;
				LL wn = qpow(g, (mod - 1) / le);
				if(op == -1) wn = qpow(wn, mod - 2); 
				for(int i = 0; i < N; i += le) {
					int w = 1, x, y;
					for(int j = 0; j < mid; j++) {
						x = a[i + j]; 
						y = a[i + j + mid] * w % mod; 
						a[i + j] = (x + y) % mod;
						a[i + j + mid] = (x - y + mod) % mod;
						w = w * wn % mod;
					}
				}
			}
		}
		void mult(LL *a, LL *b, LL *c, int M) {
			int N = 1, len = 0;
			while(N < M)	N <<= 1, len++;
			for(int i = 0; i < N; i++)	
				wz[i] = (wz[i >> 1] >> 1) | ((i & 1) << (len - 1));
			NTT(a, N, 1); NTT(b, N, 1);
			for(int i = 0; i < N; i++)	c[i] = a[i] * b[i] % mod;
			NTT(c, N, -1);
			LL t = qpow(N, mod - 2);
			for(int i = 0; i < N; i++)	c[i] = c[i] * t % mod;
		}
	}PLE;
	void main() {
		scanf("%d%d", &n, &m); n++; m++;
		for(int i = 0; i < n; i++)	scanf("%lld", &a[i]);
		for(int i = 0; i < m; i++)	scanf("%lld", &b[i]);
		PLE.mult(a, b, c, n + m - 1);
		for(int i = 0; i < n + m - 1; i++)	printf("%lld ", c[i]);
	}
}

\(\color{red}{\text{多项式全集之二 任长任模的FFT:}}\)

三模NTT现任意模数FFT(MTT):

\(1.\)为什么要用MTT:当\(p\)不是NTT模数或者多项式长度大于模数限制时,就要使用MTT。

\(2.\)MTT的使用原理:我们对初始多项式取模,那么如果在不取模卷积情况下,答案\(x\)不会超过\(N\times p^2\)。我们取三个NTT模数\(p_1,p_2,p_3\),分别做多项式乘法,得到\(x\)分别\(mod~p_1,p_2,p_3\)的答案,通过CRT合并可以得到\(x~mod~p_1p_2p_3\)的答案,如果\(x<p_1p_2p_3\)那么就可以得到准确的答案,再对\(p\)取模即可。

\(3.\)CRT合并的小优化:

\(step~0:\)初始式子

\[{\begin{cases}x\equiv c_1(mod~p_1)\\x\equiv c_2(mod~p_2)\\x\equiv c_3(mod~p_3)\end{cases}} \]

\(step~1:\)把一式二式合并(LL范围内)。

\[{\begin{cases}x\equiv a(mod~p_1p_2)\\x\equiv c_3(mod~p_3)\end{cases}} \]

\(step~2:\)再次合并(不需要\(long~double\) 快速乘)。

\(4.\)常用NTT模数:

以下模数的共同\(g=3189\)

\(p=r\times 2^k+1\) \(k\) \(g\)
\(104857601\) \(22\) \(3\)
\(167772161\) \(25\) \(3\)
\(469762049\) \(26\) \(3\)
\(950009857\) \(21\) \(7\)
\(998244353\) \(23\) \(3\)
\(1004535809\) \(21\) \(3\)
\(2013265921\) \(27\) \(31\)
\(2281701377\) \(27\) \(3\)
\(3221225473\) \(30\) \(5\)

拆系数FFT(CFFT)实现任模FFT:

\(1.\)实现原理:运用实数FFT不取模做乘法,然后取模回归到整数。但是由于误差较大(值域是\(10^{23}\)),我们令\(t=\sqrt{m}\)把系数\(a_i=k_it+b_i\),对\(k_i,t_i\)交叉做四遍卷积,求出答案按系数贡献取模加入。

\(2.\)可按合并DFT的方法优化DFT次数。

\(bluestein\)算法实现任意长长度FFT:

\(m\)不是\(2\)的幂次的时候,我们从式子入手:
\(X_i=a_iw_m^{\frac {i^2} 2},Y_i=w_m^{\frac{-i^2}2}\)

\[\begin{align*} A_k & = \sum_{j=0}^{m-1}a_jw_m^{jk}\\ & = \sum_{j=0}^{m-1}a_jw_m^{\frac{j^2+k^2-{(k-j)}^2}{2}}\\ &=w_m^{\frac {k^2} 2}\sum_{j=0}^{m-1}a_jw_m^{\frac{j^2} 2}w_m^{\frac{-{(k-j)}^2}{2}}\\ &=w_m^{\frac {k^2} 2}\sum_{j=0}^{m-1}X_jY_{k-j} \end{align*}\]

喜闻乐见的模板:

三模NTT模板(注意:不可以MTT回来,因为系数会取模)

namespace MTT{
	typedef long long LL;
	int n, m;
	LL p, mod;
	const LL p1 = 998244353;
	const LL p2 = 1004535809;
	const LL p3 = 104857601;
	const int g = 3189;
	LL a[300005], b[300005], c[300005], cpa[300005], cpb[300005];
	LL c3[300005], c1[300005], c2[300005];
	LL qpow(LL a, LL b, LL mod) {
		LL ans = 1;
		while(b) {
			if(b & 1)	ans = ans * a % mod;
			a = a * a % mod;
			b >>= 1;
		}
		return ans;
	}
	const LL inv12 = qpow(p1, p2 - 2, p2);
	const LL inv123 = qpow(p1 * p2 % p3, p3 - 2, p3);
	struct p_l_e{
		int wz[300005];
		void MTT(LL *a, int N, int op) {
			for(int i = 0; i < N; i++)
				if(i < wz[i]) swap(a[i], a[wz[i]]);
			for(int le = 2; le <= N; le <<= 1) {
				int mid = le >> 1;
				LL wn = qpow(g, (mod - 1) / le, mod);
				if(op == -1) wn = qpow(wn, mod - 2, mod);
				for(int i = 0; i < N ;i += le) {
					LL w = 1, x, y;
					for(int j = 0; j < mid; j++) {
						x = a[i + j];
						y = a[i + j + mid] * w % mod;
						a[i + j] = (x + y) % mod;
						a[i + j + mid] = (x - y + mod) % mod;
						w = w * wn % mod;
					}
				}
			}
		}
		void mult(LL *a, LL *b, LL *c, int M) {
			int N = 1, len = 0;
			while(N < M) N <<= 1, len++;
			for(int i = 0; i < N; i++)
				wz[i] = (wz[i >> 1] >> 1) | ((i & 1) << (len - 1));
			MTT(a, N, 1); MTT(b, N, 1);
			for(int i = 0; i < N; i++)	c[i] = a[i] * b[i] % mod;
			MTT(c, N, -1);
			LL t = qpow(N, mod - 2, mod);
			for(int i = 0; i < N; i++)	c[i] = c[i] * t % mod;
		}

	}PLE;
	LL CRT(LL c1, LL c2, LL c3) {
		LL x = (c1 + p1 * ((c2 - c1 + p2) % p2 * inv12 % p2));
		LL y = (x % p + p1 * p2 % p * ((c3 - x % p3 + p3) % p3 * inv123 % p3) % p) % p;
		return y;
	}
	void merge(LL *c1, LL *c2, LL *c3, LL *c, int N) {
		for(int i = 0; i < N; i++)
			c[i] = CRT(c1[i], c2[i], c3[i]);
		return;
	}
	void main() {
		scanf("%d%d%lld", &n, &m, &p); n++; m++;
		for(int i = 0; i < n; i++)	scanf("%lld", &a[i]);
		for(int i = 0; i < m; i++)	scanf("%lld", &b[i]);
		mod = p1; memcpy(cpa, a, sizeof(a)); memcpy(cpb, b, sizeof(b)); PLE.mult(cpa, cpb, c1, n + m - 1);
		mod = p2; memcpy(cpa, a, sizeof(a)); memcpy(cpb, b, sizeof(b)); PLE.mult(cpa, cpb, c2, n + m - 1);
		mod = p3; memcpy(cpa, a, sizeof(a)); memcpy(cpb, b, sizeof(b)); PLE.mult(cpa, cpb, c3, n + m - 1);
		merge(c1, c2, c3, c, n + m - 1);
		for(int i = 0; i < n + m - 1; i++)	printf("%lld ", (c[i] % p + p) % p);
		return;
	}
}

拆系数FFT模板(注意:相同系数的两项可以合并一起IDFT。采用共轭优化法,只进行四次DFT)

namespace CFFT{
	typedef long long LL;
	int n, m, p ,sqrp; 
	int a[300005], b[300005];
	const long double pi = acos(-1);
	struct cp{
		long double x, y;
		cp() {x = y = 0;}
		cp(long double X,long double Y) {x = X; y = Y; }
		cp conj() {return (cp) {x, -y};}
	}ka[300005], kb[300005], ta[300005], tb[300005], kk[300005], kt[300005], tt[300005], c[300005], I(0, 1), d[300005];
	 
	cp operator+ (const cp &a, const cp &b) {return (cp){a.x + b.x, a.y + b.y}; }
	cp operator- (const cp &a, const cp &b) {return (cp){a.x - b.x, a.y - b.y}; }
	cp operator* (const cp &a, const cp &b) {return (cp){a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x};}
	cp operator* (const cp &a, long double b) {return (cp){a.x * b, a.y * b};}
	cp operator/ (const cp &a, long double b) {return (cp){a.x / b, a.y / b};}	
	struct p_l_e{
		int wz[300005];
		void FFT(cp *a, int N, int op){
			for(int i = 0; i < N; i++)
				if(i < wz[i])	swap(a[i], a[wz[i]]);
			for(int le = 2; le <= N; le <<= 1){
				int mid = le >> 1;
				cp x, y, w, wn = (cp){cos(op * 2 * pi / le), sin(op * 2 * pi / le)};
				for(int i = 0; i < N; i += le){
					w = (cp){1, 0};
					for(int j = 0; j < mid; j++){
						x = a[i + j];
						y = a[i + j + mid] * w;
						a[i + j] = x + y;
						a[i + j + mid] = x - y;
						w = w * wn;
					}
				}
			} 
		}
		void D_FFT(cp *a, cp *b, int N, int op){
			for(int i = 0; i < N; i++)	d[i] = a[i] + I * b[i];
			FFT(d, N, op);
			d[N] = d[0];
			if(op == 1){
				for(int i = 0; i < N; i++){
					a[i] = (d[i] + d[N - i].conj()) / 2;
					b[i] = I * (-1) * (d[i] - d[N - i].conj()) / 2;
				}
			} else {
				for(int i = 0; i < N; i++){
					a[i] = cp(d[i].x, 0);
					b[i] = cp(d[i].y, 0);
				}
			}
			d[N] = cp(0, 0);
		}
		void mult(int *a, int *b, int M){
			int N = 1, len = 0;
			while(N < M) N <<= 1, len++;
			for(int i = 0; i < N; i++)
				wz[i] = (wz[i >> 1] >> 1) | ((i & 1) << (len - 1));
			for(int i = 0; i < N; i++){
				ka[i].x = a[i] >> 15;
				kb[i].x = b[i] >> 15;
				ta[i].x = a[i] & 32767;
				tb[i].x = b[i] & 32767;
			}
			D_FFT(ta, ka, N, 1); D_FFT(tb, kb, N, 1);
			for(int i = 0; i < N; i++){
				kk[i] = ka[i] * kb[i];
				kt[i] = ka[i] * tb[i] + ta[i] * kb[i];
				tt[i] = ta[i] * tb[i];
			}
			D_FFT(tt, kk, N, -1); FFT(kt, N, -1);
			for(int i = 0; i < N; i++){
				tt[i] = tt[i] / N;
				kt[i] = kt[i] / N;
				kk[i] = kk[i] / N;
			}
		}
	}PLE;
	void main() {
		scanf("%d%d%d", &n, &m, &p); n++; m++;
		for(int i = 0; i < n; i++)	scanf("%d", &a[i]),a[i] = a[i] % p;
		for(int i = 0; i < m; i++)	scanf("%d", &b[i]),b[i] = b[i] % p;
		PLE.mult(a, b, n + m - 1);
		for(int i = 0; i < n + m - 1; i++)
			printf("%lld ",(((((LL)round(kk[i].x)) % p) << 30) + ((((LL)round(kt[i].x)) % p) << 15) + ((LL)round(tt[i].x)) % p) % p);
	}
}

\(blue\_stein\)模板:

struct polynie {
	CP getw(int m, int k, int op) {
		return CP(cos(2 * pi * k / m), op * sin(2 * pi * k / m));
	}
	int wz[MAXN];
	CP A[MAXN], B[MAXN], C[MAXN];
	void FFT(CP *a, int N, int op) {
		rop(i, 0, N) if(i < wz[i]) swap(a[i], a[wz[i]]);
		for(int l = 2; l <= N; l <<= 1) {
			int mid = l >> 1;
			CP x, y, w, wn = CP(cos(pi / mid), sin(op * pi / mid));
			for(int i = 0; i < N; i += l) {
				w = CP(1, 0);
				rop(j, 0, mid) {
					x = a[i + j];
					y = w * a[i + j + mid];
					a[i + j] = x + y;
					a[i + j + mid] = x - y;
					w = w * wn;
				}
			}
		}
	}
	void mult(CP *a, CP *b, CP *c, int M) {
		int N = 1, len = 0;
		while(N < M) N <<= 1, len++;
		rop(i, 0, N) wz[i] = (wz[i >> 1] >> 1) | ((i & 1) << (len - 1));
		FFT(a, N, 1); FFT(b, N, 1);
		rop(i, 0, N) c[i] = a[i] * b[i];
		FFT(c, N, -1);
		rop(i, 0, N) c[i].x = c[i].x / N, c[i].y = c[i].y / N;
	}
	void blue_stein(CP *a, int M, int op) {
		int M2 = M << 1;
		memset(A, 0, sizeof(A));
		memset(B, 0, sizeof(B));
		memset(C, 0, sizeof(C));
		rop(i, 0, M) A[i] = a[i] * getw(M2, 1ll * i * i % M2, op);
		rop(i, 0, M2) B[i] = getw(M2, 1ll * (i - M) * (i - M) % M2, -op);
		mult(A, B, C, M2 + M - 1);
		rop(i, 0, M) a[i] = C[i + M] * getw(M2, 1ll * i * i % M2, op);
		if(op == -1) rop(i, 0, M) a[i].x = a[i].x / M, a[i].y = a[i].y / M;
	}
}PLE;

\(\color{red}{\text{多项式全集之三 多项式求逆与除法:}}\)

多项式求逆:

\(1.\)问题描述:

已知\(A(x)\),且\(F(x)A(x)\equiv 1 (mod~x^n)\),求\(F(x)\)

\(2.\)推导过程:

\[\begin{align*} B(x)&\equiv F(x)^{-1}&(mod~x^{\lceil \frac n 2 \rceil})\\ 由于 G(x)&\equiv F(x)^{-1}& (mod~x^n)\\ 所以 G(x)&\equiv F(x)^{-1}& (mod~x^{\lceil \frac n 2 \rceil})\\ G(x)& \equiv B(x)&(mod~x^{\lceil \frac n 2 \rceil})\\ G(x)-B(x)& \equiv 0&(mod~x^{\lceil \frac n 2 \rceil})\\ \end{align*}\]

两边平方,得:

由于\([G(x)-B(x)]^2\)的第\(k<n\)项为

\[\sum_{i=0}^k[g_ix^i-b_ix^i][g_{k-i}x^{k-i}-b_{k-i}x^{k-i}] \]

\(i,k-i\)一定有一项\(<\frac n 2\),所以

\[\begin{align*} [G(x)-B(x)]^2&\equiv 0 &(mod~x^n)\\ G^2(x)+B^2(x)-2G(x)B(x)&\equiv 0&(mod~x^n) \end{align*}\]

两边同乘\(A(x)\),得:

\[\begin{align*} A(x)G^2(x)+A(x)B^2(x)-2A(x)G(x)B(x)&\equiv 0& (mod~x^n)\\ G(x)+A(x)B^2(x)-2B(x)&\equiv 0& (mod~x^n)\\ G(x)&\equiv 2B(x)-A(x)B^2(x)&(mod~x^n)\\ G(x)&\equiv B(x)[2-A(x)B(x)]&(mod~x^n)\\ \end{align*}\]

多项式除法:

\(1.\)问题描述:

已知一个\(n\)次多项式\(A(x)\),一个\(m\)次多项式\(B(x)\),且\(A(x)=B(x)C(x)+D(x)\),求\(n-m\)次多项式\(C(x)\)\(<m\)次多项式\(D(x)\)

\(2.\)推导过程:

\(A(x) = B(x)C(x)+D(x)\)得:

\[\begin{align*} A(\frac 1 x)&=B(\frac 1 x)C(\frac 1 x)+D(\frac 1 x)\\ x^nA(\frac 1 x)&=x^nB(\frac 1 x)C(\frac 1 x)+x^nD(\frac 1 x)\\ x^nA(\frac 1 x)&=x^mB(\frac 1 x)x^{n-m}C(\frac 1 x)+x^{m-1}x^{n-m+1}D(\frac 1 x)\\ A_r(x)&=B_r(x)C_r(x)+x^{n-m+1}D(x)\\ A_r(x)&=B_r(x)C_r(x)&(mod \;x^{n-m+1})\\ B_r(x)&=A_r^{-1}(x)C_r(x)&(mod \;x^{n-m+1})\\ \end{align*}\]

求逆可得\(B_r(x)\),再反转得\(B(x)\),然后乘\(C(x)\)去减\(A(x)\)\(D(x)\).

喜闻乐见的模板:

namespace INV{
	typedef long long LL;
	int n, a[300005], b[300005];
	const int mod = 998244353;
	const int g = 3189;
	int qpow(int a, int b){
		int ans = 1;
		while(b){
			if(b & 1)	ans = 1ll * ans * a % mod;
			a = 1ll * a * a % mod;
			b >>= 1;
		}
		return ans;
	}
	struct p_l_e{
		int wz[300005], i_c[300005];
		void NTT(int *a, int N, int op){
			for(int i = 0; i < N; i++)
				if(i < wz[i]) swap(a[i], a[wz[i]]);
			for(int le = 2; le <= N; le <<= 1){
				int mid = le >> 1, wn = qpow(g, (mod - 1) / le);
				if(op == -1) wn = qpow(wn, mod - 2);
				for(int i = 0; i < N; i += le){
					LL w = 1; int x, y;
					for(int j = 0; j < mid; j++){
						x = a[i + j];
						y = w * a[i + j + mid] % mod;
						a[i + j] = (x + y) % mod;
						a[i + j + mid] = (x - y + mod) % mod;
						w = w * wn % mod;
					}
				}
			}
		}
		int init(int M){
			int N = 1, len = 0;
			while(N < M) N <<= 1, len++;	
			for(int i = 0; i < N; i++)
				wz[i] = (wz[i >> 1] >> 1) | ((i & 1) << (len - 1));
			return N;
		}
		void INV(int *a, int *b, int deg){
			if(deg == 1){b[0] = qpow(a[0], mod - 2); return;}
			INV(a, b, (deg + 1) >> 1);
			int N = init(deg + deg - 1);
			for(int i = 0; i < deg; i++) i_c[i] = a[i];
			for(int i = deg; i < N; i++) i_c[i] = 0;
			NTT(b, N, 1);NTT(i_c, N, 1);
			for(int i = 0; i < N; i++) b[i] = 1ll * b[i] * (2 - 1ll * b[i] * i_c[i] % mod + mod) % mod;
			NTT(b, N, -1);
			int t = qpow(N, mod - 2);
			for(int i = 0; i < N; i++) b[i] = 1ll * b[i] * t % mod;
			for(int i = deg; i < N; i++) b[i] = 0;
		}
	}PLE;
	
	void main(){
		scanf("%d", &n);
		for(int i = 0; i < n; i++)	scanf("%d", &a[i]);
		PLE.INV(a, b, n);
		for(int i = 0; i < n; i++)	printf("%d ",b[i]);
	}
}

\(\color{red}{\text{多项式全集之四 多项式ln与exp:}}\)

多项式ln:

\(1.\)做法:

\[G(x) =\ln F(x) \]

两边求导得

\[G'(x)=\frac {F'(x)} {F(x)} \]

积分回去即可。

\(2.\)应用:

\[e^{F(x)}=\sum_{k \ge 0}\frac{F^k(x)}{k!}=G(x) \]

\[F(x) = \ln G(x) \]

这个的组合意义是:无序组合。

\(F(x)\)\(f_i\)表示一些东西,那么这些东西有序组合的方案数为

\[F^0(x) + F^1(x)+F^2(x)+\cdots=\frac 1 {1 - F(x)} \]

而无序组成的方案数为:

\[\frac{F^0(x)}{0!} + \frac {F^1(x)}{1!}+\frac{F^2(x)}{2!}+\cdots=e^{F(x)} \]

如果无序组合方案数好求,那么求\(\ln\)就能得到\(F(x)\)

例题

多项式\(\exp\)

我们就是求\(F(x)=e^{A(x)}\),变形一下得\(\ln(F(x))-A(x)=0\),就是求函数\(G(z)=\ln(z)-A(x)\)的零点,带入牛顿迭代的公式得:

\[\begin{align*} F(x)&\equiv F_0(x)+\frac{G(F(x))-G(F_0(x))}{G^{(1)}(F_0(x))}&(mod\;x^n)\\ \end{align*}\]

由于\(G(F(x))\equiv 0 (mod\;x^n)\)

\[\begin{align*} F(x)\equiv F_0(x)-\frac{G(F_0(x))}{G^{(1)}(F_0(x))}&&(mod\;x^n)\\ \end{align*}\]

\(F(x)\)看成自变量\(x,A(x)\)看成常数来求导

\[\begin{align*} F(x)&\equiv F_0(x)-\frac{\ln F_0(x)-A(x)}{\frac{1}{F_0(x)}}&(mod\;x^n)\\ F(x)&\equiv F_0(x)(1-{\ln F_0(x)+A(x)})&(mod\;x^n) \end{align*}\]

对于终止情况:

\(\ln F(x)-A(x)=0(mod\;x)\)

因为都只剩下了常数项,

\(F(x)=e^{A(x)}\)

喜闻乐见的代码:

多项式\(\ln\):

namespace PLE_ln{
  struct polyme {
      int li[SZ], wz[SZ];
      void NTT(int *a, int N, int op) {
          rop(i, 0, N) if(i < wz[i]) swap(a[i], a[wz[i]]);
          for(int l = 2; l <= N; l <<= 1) {
              int mid = l >> 1;
              int x, y, w, wn = qpow(g, (mod - 1) / l);
              if(op) wn = qpow(wn, mod - 2);
              for(int i = 0; i < N; i += l) {
                  w = 1;
                  for(int j = 0; j < mid; ++j) {
                      x = a[i + j]; y = 1ll * w * a[i + j + mid] % mod;
                      a[i + j] = (x + y) % mod;
                      a[i + j + mid] = (x - y + mod) % mod;
                      w = 1ll * w * wn % mod;
                  }
              }
          }
      }
      void qd(int *a, int *b, int n) {
          rop(i, 0, n) b[i] = 1ll * a[i + 1] * (i + 1) % mod;
      }
      void jf(int *a, int *b, int n) {
          rop(i, 1, n) b[i] = 1ll * a[i - 1] * qpow(i, mod - 2) % mod;
      }
      void mult(int *a, int *b, int *c, int M) {
          int N = 1, len = 0;
          while(N < M) N <<= 1, len ++;
          rop(i, 0, N) wz[i] = (wz[i >> 1] >> 1) | ((i & 1) << (len - 1));
          NTT(a, N, 0); NTT(b, N, 0);
          rop(i, 0, N) c[i] = 1ll * a[i] * b[i] % mod;
          NTT(c, N, 1);
          int t = qpow(N, mod - 2);
          rop(i, 0, N) c[i] = 1ll * c[i] * t % mod;
      }
      void inv(int *a, int *b, int deg) {
          if(deg == 1) {b[0] = qpow(a[0], mod - 2) % mod; return;}
          inv(a, b, (deg + 1) >> 1);
          rop(i, 0, deg) li[i] = a[i];
          int N = 1, len = 0;
          while(N < deg + deg - 1) N <<= 1, len ++;
          rop(i, 0, N) wz[i] = (wz[i >> 1] >> 1) | ((i & 1) << (len - 1));
          rop(i, deg, N) li[i] = 0;
          NTT(li, N, 0); NTT(b, N, 0);
          rop(i, 0, N) b[i] = 1ll * b[i] * (2 - 1ll * li[i] * b[i] % mod + mod) % mod;
          NTT(b, N, 1);
          int t = qpow(N, mod - 2);
          for(int i = 0; i < N; i++) b[i] = 1ll * b[i] * t % mod;
          rop(i, deg, N) b[i] = 0;
      }
  }PLE;
  int a[SZ], da[SZ], ia[SZ], dla[SZ], la[SZ], n;

  void main() {

      scanf("%d", &n);
      rop(i, 0, n) scanf("%d", &a[i]);
      PLE.qd(a, da, n);
      PLE.inv(a, ia, n);
      PLE.mult(ia, da, dla, n + n - 1);
      PLE.jf(dla, la, n);
      rop(i, 0, n) printf("%d ", la[i]);
  }
}

\(\color{red}{\text{多项式全集之五 多项式快速幂与开根:}}\)

多项式快速幂方法一:

直接套用快速幂模板,重载*运算符,\(O(n\log n\log W)\)

多项式快速幂方法二:

\(F(x)^k=e^{\ln F^k(x)}=e^{k\ln F(x)}\)多项式\(ln\)\(exp\)即可。

多项式开根:

已知\(F^2(x)\equiv A(x)\;\;\;(mod\;x^n)\),求\(F(x)\)

移项得:\(F^2(x)-A(x)\equiv 0\;\;\;(mod\;x^n)\)

问题转化成求函数\(G(z)=z^2-A(x)\equiv 0\;\;\;(mod\;x^n)\)的零点,带入牛顿迭代得:

\[\begin{align*} F(x)&=\frac{G(F(x))-G(J(x))}{G^{(1)}(J(x))} + J(x)&(mod\;x^n)\\ F(x)&=\frac{A(x)-J^2(x)}{2J(x)} + \frac{2J^2(x)}{2J(x)}&(mod\;x^n)\\ F(x)&=\frac{A(x)+J^2(x)}{2J(x)}&(mod\;x^n) \end{align*}\]

多项式求逆即可。

结束状态:\(F(x)=\sqrt{A_0}\)二次剩余一下。

\(\color{red}{\text{多项式全集之六 多项式多点求值与快速插值:}}\)

多项式多点求值 :

给定多项式\(F(x)\)\(X=\{{x_0, x_1, x_2\cdots x_m}\}\),求\(F(x_0),F(x_1)\cdots\)

设:

\[\begin{align*} X_0&=\{x_0,x_1,x_2,\cdots x_{\lfloor\frac n 2\rfloor}\}\\ X_1&=\{x_{\lfloor\frac n 2\rfloor+1},x_{\lfloor\frac n 2\rfloor+2},x_{\lfloor\frac n 2\rfloor+3},\cdots x_n\}\\ P_0(x)&=\prod_{i=0}^{\lfloor\frac n 2\rfloor}(x-x_i)\\ P_1(x)&=\prod_{i=\lfloor\frac n 2\rfloor+1}^{n}(x-x_i) \end{align*}\]

显然当\(x\in X_0\)时,\(P_0(x)=0\)\(P_1\)同理。

我们设

\[A_0(x)=F(x)\% P_0(x) \]

那么

\[F(x)=P_0(x)D(x)+A_0(x) \]

\(x\in X_0\)时,\(F(x)=A_0(x)\),我们求出\(A_0(x)\)的值就可以得到\(F(x)\)的值了,而且\(A_0(x)\)长度小于\(P_0(x)\)长度(\(\lfloor\frac n 2\rfloor\))。\(P_1,A_1\)同理,这样我们把\(P\)预处理一下,就可以递归解决了。

多项式快速插值 :

\(\color{red}{\text{多项式全集之八 本文提到知识的部分扩展:}}\)

麦克劳林级数:

泰勒公式中,取\(x_0=0\)得到的式子叫麦克劳林级数:

\[\sum_{i=0}^{\infty}\frac{F^{(i)}(0)}{i!}x^i \]

posted @ 2019-03-22 20:42  Smeow  阅读(551)  评论(0编辑  收藏  举报