HDU 2588 GCD
GCD
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
Output
For each test case,output the answer on a single line.
Sample Input
3
1 1
10 2
10000 72Sample Output
1
6
260
思路:
\(ans=\sum_{i \in \{x|n\%x=0\}}\phi(\frac{n}{i})\)
证明:
设\(M=it\)
\(\Rightarrow t \leq \frac{n}{i} \And (\frac{n}{i},t)=1\)
\(So\ \ t\)的可行数量为\(\phi(\frac{n}{i})\)
答案为\(ans=\sum_{i \in \{x|n\%x=0\}}\phi(\frac{n}{i})\)
\(\mathfrak{Talk\ is\ cheap,show\ you\ the\ code.}\)
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
# define Type template<typename T>
# define read read1<int>()
Type inline T read1()
{
T t=0;
bool ty=0;
char k;
do k=getchar(),(k=='-')&&(ty=1);while('0'>k||k>'9');
do t=(t<<3)+(t<<1)+(k^'0'),k=getchar();while('0'<=k&&k<='9');
return ty?-t:t;
}
# define int long long
# define fre(k) freopen(k".in","r",stdin);freopen(k".out","w",stdout)
int work(int n)
{
int tn=n;
for(int i=2;i*i<=n;++i)
if(!(n%i))
{
while(!(n%i))n/=i;
tn=tn/i*(i-1);
}
if(n!=1)tn=tn/n*(n-1);
return tn;
}
signed main()
{
for(int T=read;T--;)
{
int s=read,m=read,ans=0;
for(int i=1;i*i<=s;++i)
if(!(s%i))
if(i*i==s&&i>=m)ans+=work(i);
else
{
if(i>=m)ans+=work(s/i);
if(s/i>=m)ans+=work(i);
}
printf("%lld\n",ans);
}
return 0;
}
浮世苍茫,不过瞬逝幻梦
善恶爱诳,皆有定数
于命运之轮中
吞噬于黄泉之冥暗
呜呼,吾乃梦之戍人
幻恋之观者
唯于万华镜中,永世长存

浙公网安备 33010602011771号