Infiniti

 :: 首页  :: 新随笔  ::  ::  :: 管理
 #include using namespace std; #define rep(i,a,n) for (long long i=a;i=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((long long)(x).size()) typedef vector VI; typedef long long ll; typedef pair PII; const ll mod=1e9+7; ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;} // head long long _,n,c,k,a[11115],fib[11020]={0,1}; namespace linear_seq { const long long N=10010; ll res[N],base[N],_c[N],_md[N]; vector Md; void mul(ll *a,ll *b,long long k) { rep(i,0,k+k) _c[i]=0; rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod; for (long long i=k+k-1;i>=k;i--) if (_c[i]) rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod; rep(i,0,k) a[i]=_c[i]; } long long solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+... // printf("%d\n",SZ(b)); ll ans=0,pnt=0; long long k=SZ(a); assert(SZ(a)==SZ(b)); rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1; Md.clear(); rep(i,0,k) if (_md[i]!=0) Md.push_back(i); rep(i,0,k) res[i]=base[i]=0; res[0]=1; while ((1ll<=0;p--) { mul(res,res,k); if ((n>>p)&1) { for (long long i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0; rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod; } } rep(i,0,k) ans=(ans+res[i]*b[i])%mod; if (ans<0) ans+=mod; return ans; } VI BM(VI s) { VI C(1,1),B(1,1); long long L=0,m=1,b=1; rep(n,0,SZ(s)) { ll d=0; rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod; if (d==0) ++m; else if (2*L<=n) { VI T=C; ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)0)(a[i]+=a[i-1])%=mod; qq.push_back(a[i]); } printf("%lld\n",linear_seq::gao(qq,n)); } return 0; }  　　 #include #define LL long long using namespace std; const LL MAXN = 111; long long aa,bb; LL K,C[MAXN], M[MAXN],x,y,m; LL gcd(LL a, LL b) { return b == 0 ? a : gcd(b, a % b); } LL exgcd(LL a, LL b, LL &x, LL &y) { if (b == 0) { x = 1, y = 0; return a; } LL r = exgcd(b, a % b, x, y), tmp; tmp = x; x = y; y = tmp - (a / b) * y; return r; } LL inv(LL a, LL b) { LL r = exgcd(a, b, x, y); while (x < 0)x+=b; return x; } int main() { int T; scanf("%d",&T); while(T--){ K=3; for (LL i = 1; i <= K; i++) scanf("%lld", &M[i]); for (LL i = 1; i <= K; i++) scanf("%lld", &C[i]); bool flag = 1; for (LL i = 2; i <= K; i++) { LL M1 = M[i - 1], M2 = M[i], C2 = C[i], C1 = C[i - 1], T = gcd(M1, M2); if ((C2 - C1) % T != 0) { flag = 0; break; } M[i] = (M1 * M2) / T; C[i] = ( inv( M1 / T, M2 / T ) * (C2 - C1) / T ) % (M2 / T) * M1 + C1; C[i] = (C[i] % M[i] + M[i]) % M[i]; } aa=C[K]; for(int i=0;;i++){ LL temp=1ll*i*i*i; temp%=M[K]; if(temp==aa){ printf("%d\n",i); break; } } } return 0; }  　　 posted on 2019-09-20 18:23  自由缚  阅读(143)  评论(0)  编辑  收藏  举报