计算给定多项式在给定点x 处的值
计算给定多项式在给定点\(x\)处的值
方法1
\[f(x)=a_0+a_1x+\cdots+a_{n-1}x^{n-1}+a_nx^n
\]
double f_1(int n, double a[], double x) {
int i;
double p = a[0];
for (i = 1; i <= n; i++)
p += (a[i] * pow(x, i));
return p;
}
方法2
多项式可以拆成如下形式:
\[f(x)=a_0+x(a_1+x(\cdots(a_{n-1}+x(a_n))\cdots)
\]
double f_2(int n, double a[], double x) {
int i;
double p = a[n];
for (i = n; i > 0; i--)
p = a[n - 1] + x * p;
return p;
}
计算给定多项式\(f(x)=\sum_{i=0}^9i\cdot x^i\)在给定点\(x=1.1\)处的值\(f(1.1)\)
#include <stdio.h>
#include <time.h>
#include <math.h>
#define MAXK 1e7
#define MAXN 10
clock_t start, stop;
double duration;
double f_1(int n, double a[], double x) {
int i;
double p = a[0];
for (i = 1; i <= n; i++)
p += (a[i] * pow(x, i));
return p;
}
double f_2(int n, double a[], double x) {
int i;
double p = a[n];
for (i = n; i > 0; i--)
p = a[n - 1] + x * p;
return p;
}
void compute_time(double function(), int n, double a[], double x) {
start = clock();
for (int i = 0; i < MAXK; i++)
function(n, a, x);
stop = clock();
duration = ((double) (stop - start)) / CLK_TCK / MAXK;
printf("Duration: %.2e s\n", duration);
}
int main(void) {
double a[MAXN];
compute_time(f_1, MAXN - 1, a, 1.1);
compute_time(f_2, MAXN - 1, a, 1.1);
return 0;
}
运行结果:
第二种方法比第一种方法快一个数量级