机器学习之垃圾邮件分类2

读取

def read_dataset(file_path='../data/SMSSpamCollection'):
    """
    读取数据集
    :return: 返回数据和标题
    """

    with open(file_path, encoding='utf-8') as f:  # 读取数据
        # 存储标题
        sms_label = []
        # 存储数据
        sms_data = []
        csv_reader = csv.reader(f, delimiter='\t')
        for line in csv_reader:
            sms_label.append(line[0])  # 提取出标签
            sms_data.append(preprocessing(line[1]))  # 对每封邮件做预处理
    return sms_data, sms_label

数据预处理

def preprocessing(text):
    """
    预处理
    :param text:
    :return:
    """
    tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]  # 分词
    stops = stopwords.words('english')  # 使用英文的停用词表
    tokens = [token for token in tokens if token not in stops]  # 停用词
    tokens = [token.lower() for token in tokens if len(token) >= 3]  # 大小写,短词
    lmtzr = WordNetLemmatizer()
    tag = nltk.pos_tag(tokens)  # 词性
    tokens = [lmtzr.lemmatize(token, pos=get_wordnet_pos(tag[i][1])) for i, token in enumerate(tokens)]  # 词性还原
    preprocessed_text = ' '.join(tokens)
    return preprocessed_text

数据划分—训练集和测试集数据划分

from sklearn.model_selection import train_test_split

x_train,x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0, stratify=y_train)

def split_dataset(data, label):
    """
    划分训练集和测试集
    :param data:
    :param label:
    :return:
    """
    x_train, x_test, y_train, y_test = train_test_split(data, label, test_size=0.2, random_state=0, stratify=label)
    return x_train, x_test, y_train, y_test

文本特征提取

sklearn.feature_extraction.text.CountVectorizer

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer

sklearn.feature_extraction.text.TfidfVectorizer

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer#sklearn.feature_extraction.text.TfidfVectorizer

from sklearn.feature_extraction.text import TfidfVectorizer

tfidf2 = TfidfVectorizer()

观察邮件与向量的关系

向量还原为邮件

def tfidf_dataset(x_train, x_test):
    """
    把原始文本转化为tf-idf的特征矩阵
    :param x_train:
    :param x_test:
    :return:
    """
    tfidf = TfidfVectorizer()
    X_train = tfidf.fit_transform(x_train)  # X_train用fit_transform生成词汇表
    X_test = tfidf.transform(x_test)  # X_test要与X_train词汇表相同,因此在X_train进行fit_transform基础上进行transform操作
    return X_train, X_test, tfidf


def revert_mail(x_train, X_train, model):
    """
    向量还原邮件
    :param x_train:
    :param X_train:
    :param model:
    :return:
    """
    s = X_train.toarray()[0]
    print("第一封邮件向量表示为:", s)
    # 该函数输入一个矩阵,返回扁平化后矩阵中非零元素的位置(index)
    a = np.flatnonzero(X_train.toarray()[0])  # 非零元素的位置(index)
    print("非零元素的位置:", a)
    print("向量的非零元素的值:", s[a])
    b = model.vocabulary_  # 词汇表
    key_list = []
    for key, value in b.items():
        if value in a:
            key_list.append(key)  # key非0元素对应的单词
    print("向量非零元素对应的单词:", key_list)
    print("向量化之前的邮件:", x_train[0])

 

模型选择

from sklearn.naive_bayes import GaussianNB

from sklearn.naive_bayes import MultinomialNB

说明为什么选择这个模型?

def mnb_model(x_train, x_test, y_train, y_test):
    """
    模型选择(根据数据特点选择多项式分布)
    :param x_train:
    :param x_test:
    :param y_train:
    :param y_test:
    :return:
    """
    mnb = MultinomialNB()
    mnb.fit(x_train, y_train)
    ypre_mnb = mnb.predict(x_test)
    print("总数:", len(y_test))
    print("预测值正确数:", (ypre_mnb == y_test).sum())
    return ypre_mnb


模型评价:混淆矩阵,分类报告

from sklearn.metrics import confusion_matrix

confusion_matrix = confusion_matrix(y_test, y_predict)

说明混淆矩阵的含义

from sklearn.metrics import classification_report

说明准确率、精确率、召回率、F值分别代表的意义

def class_report(ypre_mnb, y_test):
    """
    模型评价:混淆矩阵,分类报告
    :param ypre_mnb:
    :param y_test:
    :return:
    """
    conf_matrix = confusion_matrix(y_test, ypre_mnb)
    print("混淆矩阵:\n", conf_matrix)
    c = classification_report(y_test, ypre_mnb)
    print("------------------------------------------")
    print("分类报告:\n", c)
    print("模型准确率:%.2f%%"%((conf_matrix[0][0] + conf_matrix[1][1]) / np.sum(conf_matrix)*100))

比较与总结

如果用CountVectorizer进行文本特征生成,与TfidfVectorizer相比,效果如何?

 前者只考虑词汇在文本中出现的频率,属于词袋模型特征,后者除了考量某词汇在文本出现的频率,还关注包含这个词汇的所有文本的数量,能够削减高频没有意义的词汇出现带来的影响, 挖掘更有意义的特征。属于Tfidf特征。两者相比,对于负类的预测更加准确,而正类的预测则稍逊色。但总体预测正确率也比TfidfVectorizer稍高,相比之下似乎CountVectorizer更适合进行预测。

完整代码

"""
 @author Rakers
 @guide 邮件处理2
"""


import nltk, csv
import numpy as np
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import confusion_matrix, classification_report


def get_wordnet_pos(treebank_tag):
    """
    根据词性,生成还原参数pos
    :param treebank_tag:
    :return:
    """
    if treebank_tag.startswith('J'):  # adj
        return nltk.corpus.wordnet.ADJ
    elif treebank_tag.startswith('V'):  # v
        return nltk.corpus.wordnet.VERB
    elif treebank_tag.startswith('N'):  # n
        return nltk.corpus.wordnet.NOUN
    elif treebank_tag.startswith('R'):  # adv
        return nltk.corpus.wordnet.ADV
    else:
        return nltk.corpus.wordnet.NOUN


def preprocessing(text):
    """
    预处理
    :param text:
    :return:
    """
    tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]  # 分词
    stops = stopwords.words('english')  # 使用英文的停用词表
    tokens = [token for token in tokens if token not in stops]  # 停用词
    tokens = [token.lower() for token in tokens if len(token) >= 3]  # 大小写,短词
    lmtzr = WordNetLemmatizer()
    tag = nltk.pos_tag(tokens)  # 词性
    tokens = [lmtzr.lemmatize(token, pos=get_wordnet_pos(tag[i][1])) for i, token in enumerate(tokens)]  # 词性还原
    preprocessed_text = ' '.join(tokens)
    return preprocessed_text


def read_dataset():
    """
    读取数据集
    :return: 返回数据和标题
    """
    file_path = r'SMSSpamCollection'
    sms = open(file_path, encoding='utf-8')  # 读取数据
    # 存储标题
    sms_label = []
    # 存储数据
    sms_data = []
    csv_reader = csv.reader(sms, delimiter='\t')
    for line in csv_reader:
        sms_label.append(line[0])  # 提取出标签
        sms_data.append(preprocessing(line[1]))  # 对每封邮件做预处理
    sms.close()
    return sms_data, sms_label


def split_dataset(data, label):
    """
    划分训练集和测试集
    :param data:
    :param label:
    :return:
    """
    x_train, x_test, y_train, y_test = train_test_split(data, label, test_size=0.2, random_state=0, stratify=label)
    return x_train, x_test, y_train, y_test

def tfidf_dataset(x_train, x_test):
    """
    把原始文本转化为tf-idf的特征矩阵
    :param x_train:
    :param x_test:
    :return:
    """
    tfidf = TfidfVectorizer()
    X_train = tfidf.fit_transform(x_train)  # X_train用fit_transform生成词汇表
    X_test = tfidf.transform(x_test)  # X_test要与X_train词汇表相同,因此在X_train进行fit_transform基础上进行transform操作
    return X_train, X_test, tfidf


def revert_mail(x_train, X_train, model):
    """
    向量还原邮件
    :param x_train:
    :param X_train:
    :param model:
    :return:
    """
    s = X_train.toarray()[0]
    print("第一封邮件向量表示为:", s)
    # 该函数输入一个矩阵,返回扁平化后矩阵中非零元素的位置(index)
    a = np.flatnonzero(X_train.toarray()[0])  # 非零元素的位置(index)
    print("非零元素的位置:", a)
    print("向量的非零元素的值:", s[a])
    b = model.vocabulary_  # 词汇表
    key_list = []
    for key, value in b.items():
        if value in a:
            key_list.append(key)  # key非0元素对应的单词
    print("向量非零元素对应的单词:", key_list)
    print("向量化之前的邮件:", x_train[0])


def mnb_model(x_train, x_test, y_train, y_test):
    """
    模型选择(根据数据特点选择多项式分布)
    :param x_train:
    :param x_test:
    :param y_train:
    :param y_test:
    :return:
    """
    mnb = MultinomialNB()
    mnb.fit(x_train, y_train)
    ypre_mnb = mnb.predict(x_test)
    print("总数:", len(y_test))
    print("预测值正确数:", (ypre_mnb == y_test).sum())
    return ypre_mnb

def class_report(ypre_mnb, y_test):
    """
    模型评价:混淆矩阵,分类报告
    :param ypre_mnb:
    :param y_test:
    :return:
    """
    conf_matrix = confusion_matrix(y_test, ypre_mnb)
    print("混淆矩阵:\n", conf_matrix)
    c = classification_report(y_test, ypre_mnb)
    print("------------------------------------------")
    print("分类报告:\n", c)
    print("模型准确率:%.2f%%"%((conf_matrix[0][0] + conf_matrix[1][1]) / np.sum(conf_matrix)*100))


if __name__ == '__main__':
    # 读取数据集
    sms_data, sms_label = read_dataset()
    # 划分数据集
    x_train, x_test, y_train, y_test = split_dataset(sms_data, sms_label)
    # 把原始文本转化为tf-idf的特征矩阵
    X_train, X_test, tfidf = tfidf_dataset(x_train, x_test)
    # 向量还原成邮件
    revert_mail(x_train, X_train, tfidf)
    # 模型选择
    y_mnb = mnb_model(X_train, X_test, y_train, y_test)
    # 模型评价
    class_report(y_mnb, y_test)

 

posted @ 2020-06-10 21:31  诚哥博客  阅读(245)  评论(0编辑  收藏  举报