Page Top

数论——中国剩余定理、扩展中国剩余定理 学习笔记

数论——中国剩余定理、扩展中国剩余定理

中国剩余定理

定义

中国剩余定理(Chinese Remainder Theorem,CRT)

求解如下形式的一元线性同余方程组(其中 \(m\) 两两互质):

$\left\{\begin{matrix} x \equiv a_1 \pmod {m_1} \\ x \equiv a_2 \pmod {m_2} \\ \dots \\ x \equiv a_k \pmod {m_k} \end{matrix}\right.$

过程

  1. 计算所有模数的积 \(M = \prod m_i\)
  2. 对于第 \(i\) 个方程:
    1. 计算:\(M_i = \dfrac{M}{m_i}\)
    2. 计算:\(v_i = {M_i}^{-1} \pmod{m_i}\)乘法逆元);
    3. 计算:\(c_i = M_iv_i\)
  3. 方程组在 \(0 \sim M - 1\) 范围内的唯一解为:\(x = \sum\limits_{i = 1}^k a_ic_i \pmod M\)

证明

证明对于任意 \(i \in [1, k]\),有 \(x\equiv a_i \pmod {m_i}\)

\(i\neq j\) 时,\(M_j\) 中乘进去了 \(m_i\),所以有 \(M_j \equiv 0 \pmod {m_i}\)
所以 \(c_j \equiv M_j \equiv 0 \pmod {m_i}\)

又有 \(c_i \equiv M_i \cdot {M_i}^{-1} \pmod{m_i} \equiv 1 \pmod {m_i}\),所以我们有:

\[\begin{array}{rll} x &\equiv \sum\limits_{j=1}^k a_jc_j &\pmod {m_i} \\ &\equiv a_ic_i &\pmod {m_i} \\ &\equiv a_i &\pmod {m_i} \end{array} \]

即证明了解同余方程组的算法的正确性。

性质

  1. 系数列表 \(\{a_i\}\) 与解 \(x\) 之间是一一映射关系,方程组总是有唯一解。
    证明见:https://oi-wiki.org/math/number-theory/crt/

  2. 设模 \(M\) 意义下的一个特解是 \(x_0\),则通解为:\(x = x_0 + kM\),其中 \(k \in \mathbb N\).

代码

题目:P1495 中国剩余定理

点击查看代码
const int N = 10;

ll exgcd(ll a, ll b, ll &x, ll &y, ll d = 0)
{
    if (b == 0)
        x = 1, y = 0, d = a;
    else
        d = exgcd(b, a % b, y, x), y -= a / b * x;
    return d;
}

ll inv(ll a, const ll m, ll x = 0, ll y = 0)
{
    exgcd(a, m, x, y);
    return (x % m + m) % m;
}

int a[N], m[N];

int main()
{
    int n = rr;

    ll mul = 1;
    for (int i = 1; i <= n; ++i)
        m[i] = rr, a[i] = rr, mul *= m[i];

    ll x = 0;
    for (int i = 1; i <= n; ++i)
    {
        ll t = mul / m[i], c = inv(t, m[i]);
        x = (x + a[i] * t % mul * c % mul) % mul;
    }

    printf("%lld\n", x);
    return 0;
}

应用

CRT 合并

若要求一个大数 \(r \bmod m\) 的结果 \(x\),即求解关于 \(x\) 的线性同余方程 \(x \equiv r \pmod m\)

则可以将模数分解为 \(m = \sum\limits_{i = 1}^k p_i\)(即质因数分解,\(p\) 两两互质);

然后去求解 \(x\) 在模各个 \(p_i\) 意义下的结果,最后用 CRT 合并;则求出来的答案一定是一一对应的。

即将 \(x \equiv r \pmod m\) 转换为一个线性同余方程组:\(\left\{\begin{array}{c} x \equiv r \pmod {m_1} \\ x \equiv r \pmod {m_2} \\ \dots \\ x \equiv r \pmod {m_k} \end{array}\right.\)

CRT 合并的举例

题目:P2480 古代猪文。题面略...

\(\dbinom{n}{m} \bmod 999911658\),即求 \(x \equiv \dbinom{n}{m} \pmod{999911658}\).

根据上方的描述,因为 \(999911658 = 2 \times 3 \times 4679 \times 35617\),原方程转化为:

\[\left\{\begin{align} x &\equiv \dbinom{n}{m} \pmod {2} \\ x &\equiv \dbinom{n}{m} \pmod {3} \\ x &\equiv \dbinom{n}{m} \pmod {4679} \\ x &\equiv \dbinom{n}{m} \pmod {35617} \end{align}\right.\]

使用 CRT 合并即可.

点击查看核心代码
// ...
const int N = 35620;

const ll MOD1 = 999911659;
const ll MOD2 = 999911658;

const ll m[4] = {2, 3, 4679, 35617};
const ll r[4] = {499955829, 333303886, 289138806, 877424796};	// 即 c[i]

// ...
int main()
{
    int n = rr, g = rr;
    if (g % MOD1 == 0)
        printf("0\n"), exit(0);

    // 分解质因数至 dv 数组...
    ll x = 0;
    for (int i = 0; i < 4; ++i)
    {
        MOD = m[i];

        // 预处理模 MOD 意义下的逆元...
        for (int j : dv)
            x = (x + lucas(n, j) * r[i] % MOD2) % MOD2;
    }

    ll r = qpow(g, x, MOD1);
    printf("%lld\n", r);
    return 0;
}

扩展中国剩余定理

定义

求解线性同余方程组\(\left\{\begin{matrix} x \equiv a_1 \pmod {m_1} \\ x \equiv a_2 \pmod {m_2} \\ \dots \\ x \equiv a_k \pmod {m_k} \end{matrix}\right.\)

但是模数 \(m_i\) 不一定两两互质。

此时因为 \(m_i\) 不一定与 \(m_j\) 互质,故不一定存在乘法逆元,即无法使用中国剩余定理。

做法

公式变形

先考虑前两个方程:\(x\equiv a_1 \pmod {m_1}\)\(x\equiv a_2 \pmod {m_2}\).
将它们转化为不定方程:\(x=m_1p+a_1=m_2q+a_2\)\(p, q \in \mathbb Z\).
则有 \(m_1p-m_2q=a_2-a_1\).

解的情况

裴蜀定理
\(\gcd(m_1,m_2) \nmid a_2-a_1\) 时,无解;
\(\gcd(m_1,m_2) \mid a_2-a_1\) 时,有解。

求解不定方程

现在考虑如何使用扩展欧几里得算法求出一组可行解:

考虑方程:\(m_1p-m_2q=a_2-a_1\).
因为 \(\gcd(m_1,m_2) \mid a_2-a_1\),所以方程两边可以同时除去 \(\gcd(m_1,m_2)\),同时设:

$\left \{ \begin{array}{rl} k_1 &= \dfrac{m_1}{\gcd(m_1,m_2)} \\\\ k_2 &= \dfrac{m_2}{\gcd(m_1,m_2)} \\\\ z &= \dfrac{a_2-a_1}{\gcd(m_1,m_2)} \end{array} \right.$

\(k_1p - k_2q = z\),且 \(k_1 \perp k_2\);所以可以用扩展欧几里得算出:

方程 \(k_1s + k_2t = 1\) 的一组解 \((s, t)\);因此有 \(\left\{\begin{array}{l} p = zs \\ q = -zs \\ \end{array}\right.\)

回看刚开始的方程 \(x\equiv a_1 \pmod {m_1}\),即可得出一个特解:

\[\begin{array}{rl} x_0 & = m_1p+a_1 \\\\ &= m_1 \cdot zs + a_1 \\\\ & = \dfrac{m_1s\times(a_2-a_1)}{\gcd(m_1,m_2)} + a_1 \end{array} \]

手模一下可知新的方程是模 \(\operatorname{lcm}(m_1, m_2)\) 意义下的。

然后再考虑将特解转为通解,这一点很简单,在此引用 rxj 的一句话:从线性代数的角度讲,这个通解的构造方式是十分平凡的。对 \(\operatorname{lcm}(m_1, m_2)\) 取模的结果,将整个整数集划分成了 \(\operatorname{lcm}(m_1, m_2)\) 个等价类,哪个等价类里面有特解,那整个等价类肯定全都是解。

也就是通解 \(x' = x_0 + k\times\operatorname{lcm}(m_1, m_2)\),其中 \(k \in \mathbb Z\).

然后就可以得出合并后的方程:\(x \equiv x' \pmod{\operatorname{lcm}(m_1, m_2)}\).

如果你没看懂,可以再看看 rxj 的 https://www.luogu.com.cn/blog/blue/kuo-zhan-zhong-guo-sheng-yu-ding-li

代码(此处的乘法比较容易溢出,一般开大一点,long long 不行就 int128):

void merge(ll &a1, ll &m1, ll a2, ll m2)
{
    ll g = gcd(m1, m2), m = m1 / g * m2;

    ll p, q;
    exgcd(m1 / g, m2 / g, p, q);

    p = p * m1 % m;
    p = p * ((a2 - a1) / g) % m;

    a1 = (a1 + p + m) % m;
    m1 = m;
}

例题

题目:P4777 扩展中国剩余定理

点击查看代码

这道题很坑,数很大,我开到了 int128...

typedef __int128_t vl;

const int N = 1e5 + 10;

ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }

ll exgcd(ll a, ll b, vl &x, vl &y)
{
    if (b == 0)
    {
        x = 1, y = 0;
        return a;
    }
    ll d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

void merge(ll &a1, ll &m1, ll a2, ll m2)
{
    ll g = gcd(m1, m2), m = m1 / g * m2;

    vl p, q;
    exgcd(m1 / g, m2 / g, p, q);

    p = p * m1 % m;
    p = p * ((a2 - a1) / g) % m;

    a1 = (a1 + p + m) % m;
    m1 = m;
}

int main()
{
    int n = rr;

    ll mm = rr, aa = rr;
    for (int i = 1; i < n; ++i)
    {
        ll m = rr, a = rr;
        merge(aa, mm, a, m);
    }

    printf("%lld\n", aa % mm);
    return 0;
}

Reference

[1] https://oi-wiki.org/math/number-theory/crt/
[2] https://www.bilibili.com/video/BV1AN4y1N7Su/
[3] https://www.bilibili.com/video/BV1Ut4y1F7HG/
[4] https://numbermatics.com/n/999911658/
[5] https://www.luogu.com.cn/blog/blue/kuo-zhan-zhong-guo-sheng-yu-ding-li

posted @ 2023-09-22 21:19  RainPPR  阅读(56)  评论(0编辑  收藏  举报