摘要: 傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法,比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。印象中,傅立叶变换在图像处理以下几个话题都有重要作用:1.图像增强与图像去噪绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘;2.图像分割之边缘检测提取图像高频分量3.图像特征提取:形状特征:傅里叶描述子纹理特征:直接通过傅里叶系数来计算纹理特征其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性4.图像压缩可以直接通过傅里叶系数来 阅读全文
posted @ 2011-10-28 19:34 freeboy小亮 阅读(829) 评论(0) 推荐(0)
摘要: 二维Fourier变换的应用前面已经提到了Fourier变换有两个好处,即:可以获得信号的频域特性;可以将卷积运算转换为乘积运算。因此二维Fourier变换的应用也是根据这两个特点来进行的。在图像滤波中的应用首先,我们来看Fourier变换后的图像,中间部分为低频部分,越靠外边频率越高。因此,我们可以在Fourier变换图中,选择所需要的高频或是低频滤波。在图像压缩中的应用变换系数刚好表现的是各个频率点上的幅值。在小波变换没有提出时,用来进行压缩编码。考虑到高频反映细节、低频反映景物概貌的特性。往往认为可将高频系数置为0,骗过人眼。在卷积运算中的应用从前面的图像处理算法中知道,如果抽象来看,其 阅读全文
posted @ 2011-10-28 19:29 freeboy小亮 阅读(1626) 评论(0) 推荐(0)