摘要: SVD奇异值分解: SVD是一种可靠的正交矩阵分解法。可以把A矩阵分解成U,∑,VT三个矩阵相乘的形式。(Svd(A)=[U*∑*VT],A不必是方阵,U,VT必定是正交阵,S是对角阵<以奇异值为对角线,其他全为0>) 用途: 信息检索(LSA:隐性语义索引,LSA:隐性语义分析),分解后的奇异值代 阅读全文
posted @ 2016-12-22 19:45 NextNight 阅读(7444) 评论(1) 推荐(2)