Dijkstra算法课后补分博客

题目名称:Dijkstra算法

题目要求:课上给出相关附图,求解附图顶点A的单源最短路径。
附图:

做题过程

1.了解Dijkstra算法的相关知识,包括定义以及使用方法。
定义:Dijkstra算法是很有代表性的算法。Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权边。具体的定义如下:Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权边。
2.使用方法:思想是按路径长度递增次序产生最短路径算法,先定义两组:
(1)S:已求出最短路径的顶点的集合(初始时只含有源点V0)

(2)V-S=T:尚未确定最短路径的顶点集合
在加入元素要保证:
(1)从源点V0到S中其他各顶点的最短路径长度都不大于从V0到T中任何顶点的最短路径长度

(2)每个顶点对应一个距离值

S中顶点:从V0到此顶点的最短路径长度

T中顶点:从V0到此顶点的只包括S中顶点作中间顶点的最短路径长度

依据:可以证明V0到T中顶点Vk的最短路径,或是从V0到Vk的直接路径的权值;或是从V0经S中顶点到Vk的路径权值之和

(反证法可证)
最后是具体步骤:

  1. 初始时令 S={V0},T={其余顶点},T中顶点对应的距离值

若存在<V0,Vi>,d(V0,Vi)为<V0,Vi>弧上的权值

若不存在<V0,Vi>,d(V0,Vi)为∞

  1. 从T中选取一个其距离值为最小的顶点W且不在S中,加入S

  2. 对其余T中顶点的距离值进行修改:若加进W作中间顶点,从V0到Vi的距离值缩短,则修改此距离值

重复上述步骤2、3,直到S中包含所有顶点,即W=Vi为止

则对应到这道题目上,就可以根据以上步骤画出顶点A的单源最短路径:

posted @ 2017-12-10 13:21  邢天岳  阅读(196)  评论(0编辑  收藏