变态跳台阶
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
参数的target是台阶的数量:
f(1) = 1
f(2) = f(2-1) + f(2-2)
f(3) = f(3-1) + f(3-2) + f(3-3) ,第一次跳一阶,后面剩下f(3-1); 第一次跳两阶,后面剩下f(3-2);第一次跳三阶,后面剩下f(3-3)
f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1)
f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)
f(n) = f(n-1) + f(n-1) = 2*f(n-1)
| 1 ,(n=0 )
f(n) = | 1 ,(n=1 )
              | 2*f(n-1),(n>=2)
public class Solution {
    public int JumpFloorII(int target) {
        if (target <= 0)
            return 0;
        else if (target == 1)
            return 1;
        else 
            return 2 * JumpFloorII(target - 1);
    }
}
 
                    
                     
                    
                 
                    
                 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号