摘要:
目录概符号说明MMGCN代码 Wei Y., Wang X., Nie L., He X., Hong R. and Chua T. MMGCN: Multi-modal graph convolution network for personalized recommendation of mic 阅读全文
摘要:
目录概符号说明Cold Brew代码 Zheng W., Huang E. W., Rao N., Katariya S., Wang Z., Subbian K. Cold brew: Distilling graph node representations with incomplete or 阅读全文
摘要:
目录概符号说明MotivationGCOND代码 Jin W., Zhao L., Zhang S., Liu Y., Tang J. and Shah N. Graph condensation for graph neural networks. ICLR, 2022. 概 图上做压缩的工作. 阅读全文
摘要:
目录概Noise contrastive estimation Mnih A. and Teh Y. W. A fast and simple algorithm for training neural probabilistic language models. ICML, 2012. 概 NCE 阅读全文
摘要:
目录概InstructRecInstruction Generation Zhang J., Xie R., Hou Y., Zhao W. X., Lin L., Wen J. Recommendation as instruction following: a large language mo 阅读全文
摘要:
目录概符号说明DeepWalk代码 Perozzi B., AI-Rfou R. and Skiena S. DeepWalk: Online learning of social representations. KDD, 2014. 概 经典的 graph embedding 学习方法. 符号说 阅读全文
摘要:
目录概符号说明MotivationFavardGNN代码 Guo Y. and Wei Z. Graph neural networks with learnable and optimal polynomial bases. ICML, 2023. 概 自动学多项式基的谱图神经网络. 符号说明 \ 阅读全文
摘要:
目录概符号说明MotivationNewtonNet代码 Xu J., Dai E., Luo D>, Zhang X. and Wang S. Learning graph filters for spectral gnns via newton interpolation. 2023. 概 令谱 阅读全文
摘要:
目录概符号说明DSF代码 Guo J., Huang K, Yi X. and Zhang R. Graph neural networks with diverse spectral filtering. WWW, 2023. 概 为每个结点赋予不同的多项式系数. 符号说明 \(\mathcal{ 阅读全文
摘要:
目录概符号说明MotivationChebNetII代码 He M., Wei Z. and Wen J. Convolutional neural networks on graphs with chebyshev approximation, revisited. NIPS, 2022. 概 作 阅读全文
摘要:
[TOC] Guo J., Du L, Chen X., Ma X., Fu Q., Han S., Zhang D. and Zhang Y. On manipulating signals of user-item graph: A jacobi polynomial-based graph c 阅读全文
摘要:
目录概符号说明Spectral GNNChoice of Basis for Polynomial FiltersJacobiConv代码 Wang X. and Zhang M. How powerful are spectral graph neural networks? ICML, 2022 阅读全文
摘要:
目录概ListNetPermutation ProbabilityTop-k ProbabilityListMLE Cao Z., Qin T., Liu T., Tsai M. and Li H. Learning to rank: from pairwise approach to listwi 阅读全文
摘要:
目录概符号说明GATv2代码 Brody S., Alon U. and Yahav E. How attentive are graph attention networks? ICLR, 2022. 概 作者发现了 GAT 的 attention 并不能够抓住边的重要性, 于是提出了 GATv2 阅读全文
摘要:
目录概符号说明Shadow-GNN代码 Zeng H., Zhang M., Xia Y., Srivastava A., Malevich A., Kannan R., Prasanna V., Jin L. and Chen R. Decoupling the depth and scope o 阅读全文
摘要:
目录概TallRec代码 Bao K., Zhang J., Zhang Y., Wang W., Feng F. and He X. TALLRec: An effective and efficient tuning framework to align large language model 阅读全文
摘要:
目录概MotivationMarked Temporal Point Process代码 Du N., Dai H., Trivedi R., Upadhyay U., Gomez-Rodriguze M. and Song L. Recurrent marked temporal point pr 阅读全文
摘要:
目录TPPEvolutionary point processesConditional intensity function [\(t\)]Conditional intensity function [\(t, \kappa\)]InferenceSimulationInverse Method 阅读全文
摘要:
目录概符号说明LLP代码 Guo Z., Shiao W., Zhang S., Liu Y., Chawla N. V., Shah N. and Zhao T. Linkless link prediction via relational distillation. ICML, 2023. 概 阅读全文