摘要: 题意:给定一个N*N个网格(每条边上共有N+1个点),从这个网格中取出三个点构成三角形,问一共可以构成多少种三角形。解法:首先令N' = N+1,那么不考虑直线相交的情况下从N'*N'个点中选出三个点的方案数为C(3, N'*N');然后考虑到每条平行于水平和垂直线的线段上共有2*N'*C(3, N')种情况需要减去,最后还要减去斜线直线上的情况。斜线上则只考虑从左上到右下的情况,乘以2表示从右到左是对称的。对于每一种斜线的情况都可以将左上端点和右下端点固定,然后就可以看作是一个矩形对角线上除去两个端点外,中间还有多少个点的问题了,对于这 阅读全文
posted @ 2013-06-11 22:27 沐阳 阅读(320) 评论(0) 推荐(0)