爬虫实践--排行榜小说批量下载
爬虫实践---排行榜小说批量下载
一、目标
排行榜的地址:http://www.qu.la/paihangbang/
注:文末有福利!
找到各类排行旁的的每一部小说的名字,和在该网站的链接。
二、观察网页的结构

很容易就能发现,每一个分类都是包裹在:
<div class="index_toplist mright mbottom">
之中,
这种条理清晰的网站,大大方便了爬虫的编写。
在当前页面找到所有小说的连接,并保存在列表即可。
三、列表去重的小技巧:
就算是不同类别的小说,也是会重复出现在排行榜的。
这样无形之间就会浪费很多资源,尤其是在面对爬大量网页的时候。
这里只要一行代码就能解决:
url_list = list(set(url_list))
这里调用了一个list的构造函数set:这样就能保证列表里没有重复的元素了。
四、代码实现
模块化,函数式编程是一个非常好的习惯,坚持把每一个独立的功能都写成函数,这样会使代码简单又可复用。
1.网页抓取头:
import requests
from bs4 import BeautifulSoup
def get_html(url):
try:
r = requests.get(url,timeout=30)
r.raise_for_status
r.encoding='utf-8'
return r.text
except:
return 'error!'
2.获取排行榜小说及其链接:
爬取每一类型小说排行榜,
按顺序写入文件,
文件内容为 小说名字+小说链接
将内容保存到列表
并且返回一个装满url链接的列表
def get_content(url):
url_list = []
html = get_html(url)
soup = BeautifulSoup(html,'lxml')
# 由于小说排版的原因,历史类和完本类小说不在一个div里
category_list = soup.find_all('div',class_='index_toplist mright mbottom')
history_list = soup.find_all('div',class_='index_toplist mbottom')
for cate in category_list:
name = cate.find('div',class_='toptab').span.text
with open('novel_list.csv','a+') as f:
f.write('\n小说种类:{} \n'.format(name))
book_list = cate.find('div',class_='topbooks').find_all('li')
# 循环遍历出每一个小说的的名字,以及链接
for book in book_list:
link = 'http://www.qu.la/' + book.a['href']
title = book.a['title']
url_list.append(link)
# 这里使用a模式写入,防止清空文件
with open('novel_list.csv','a') as f:
f.write('小说名:{} \t 小说地址:{} \n'.format(title,link))
for cate in history_list:
name = cate.find('div',class_='toptab').span.text
with open('novel_list.csv','a') as f:
f.write('\n小说种类: {} \n'.format(name))
book_list = cate.find('div',class_='topbooks').find_all('li')
for book in book_list:
link = 'http://www.qu.la/' + book.a['href']
title = book.a['title']
url_list.append(link)
with open('novel_list.csv','a') as f:
f.write('小说名:{} \t 小说地址:{} \n'.format(title,link))
return url_list
3.获取单本小说的所有章节链接:
获取该小说每个章节的url地址,并创建小说文件
# 获取单本小说的所有章节链接
def get_txt_url(url):
url_list = []
html = get_html(url)
soup = BeautifulSoup(html,'lxml')
list_a = soup.find_all('dd')
txt_name = soup.find('dt').text
with open('C:/Users/Administrator/Desktop/小说/{}.txt'.format(txt_name),'a+') as f:
f.write('小说标题:{} \n'.format(txt_name))
for url in list_a:
url_list.append('http://www.qu.la/' + url.a['href'])
return url_list,txt_name
4.获取单页文章的内容并保存到本地
这里有个小技巧:
从网上爬下来的文件很多时候都是带着<br>之类的格式化标签,
可以通过一个简单的方法把它过滤掉:
html = get_html(url).replace('<br/>', '\n')
这里单单过滤了一种标签,并将其替换成‘\n’用于文章的换行,
def get_one_txt(url,txt_name):
html = get_html(url).replace('<br/>','\n')
soup = BeautifulSoup(html,'lxml')
try:
txt = soup.find('div',id='content').text
title = soup.find('h1').text
with open('C:/Users/Administrator/Desktop/小说/{}.txt'.format(txt.name),'a') as f:
f.write(title + '\n\n')
f.write(txt)
print('当前小说:{}当前章节{}已经下载完毕'.format(txt_name,title))
except:
print('ERROR!')
6.主函数
def get_all_txt(url_list):
for url in url_list:
# 遍历获取当前小说的所有章节的目录,并且生成小说头文件
page_list,txt_name = get_txt_url(url)
def main():
# 小说排行榜地址
base_url = 'http://www.qu.la/paihangbang/'
# 获取排行榜中所有小说的url链接
url_list = get_content(base_url)
# 除去重复的小说
url_list = list(set(url_list))
get_all_txt(url_list)
if __name__ == '__main__':
main()
7.输出结果


5.缺点:
本次爬虫写的这么顺利,更多的是因为爬的网站是没有反爬虫技术,以及文章分类清晰,结构优美。
但是,按照这篇文的思路去爬取小说,
大概计算了一下:
一篇文章需要:0.5s
一本小说(1000张左右):8.5分钟
全部排行榜(60本): 8.5小时!
那么,这种单线程的爬虫,速度如何能提高呢?
自己写个多线程模块?
其实还有更好的方式:Scrapy框架
后面可将这里的代码重构一边遍,
速度会几十倍甚至几百倍的提高了!
这其实也是多线程的威力!
最后,给大家推荐一个良心公众号【IT资源社】:
本公众号致力于免费分享全网最优秀的视频资源,学习资料,面试经验等,前端,PHP,JAVA,算法,Python,大数据等等,你想要的这都有
IT资源社-QQ交流群:601357554
微信搜索公众号:ITziyuanshe 或者扫描下方二维码直接关注,
里面基本什么资料都有,基础到进阶到项目实战,如果觉得不够还可以加群跟群主要,最重要的是全部免费!


浙公网安备 33010602011771号