跟着Leo机器学习:sklearn之Support Vector Machines
一个很有趣的个人博客,不信你来撩 fangzengye.com
sklearn框架

函数导图

1. Classification
from sklearn import svm
X = [[0, 0], [1, 1]]
y = [0, 1]
clf = svm.SVC()
clf.fit(X, y)
clf.predict([[2., 2.]])
内部参数
# get support vectors clf.support_vectors_# get indices of support vectors
clf.support_
# get number of support vectors for each class
clf.n_support_
1.1. Multi-class classification
SVC
X = [[0], [1], [2], [3]] Y = [0, 1, 2, 3] clf = svm.SVC(decision_function_shape='ovo') clf.fit(X, Y)dec = clf.decision_function([[1]])
dec.shape[1] # 4 classes: 4*3/2 = 6
clf.decision_function_shape = "ovr"
dec = clf.decision_function([[1]])
dec.shape[1] # 4 classes
LinearSVC
lin_clf = svm.LinearSVC() lin_clf.fit(X, Y)
dec = lin_clf.decision_function([[1]])
dec.shape[1]
1.3. Unbalanced problems
Plot different SVM classifiers in the iris dataset
print(__doc__)import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasetsdef make_meshgrid(x, y, h=.02):
"""Create a mesh of points to plot inParameters ---------- x: data to base x-axis meshgrid on y: data to base y-axis meshgrid on h: stepsize for meshgrid, optional Returns ------- xx, yy : ndarray """</span> x_min<span class="token punctuation">,</span> x_max <span class="token operator">=</span> x<span class="token punctuation">.</span><span class="token builtin">min</span><span class="token punctuation">(</span><span class="token punctuation">)</span> <span class="token operator">-</span> <span class="token number">1</span><span class="token punctuation">,</span> x<span class="token punctuation">.</span><span class="token builtin">max</span><span class="token punctuation">(</span><span class="token punctuation">)</span> <span class="token operator">+</span> <span class="token number">1</span> y_min<span class="token punctuation">,</span> y_max <span class="token operator">=</span> y<span class="token punctuation">.</span><span class="token builtin">min</span><span class="token punctuation">(</span><span class="token punctuation">)</span> <span class="token operator">-</span> <span class="token number">1</span><span class="token punctuation">,</span> y<span class="token punctuation">.</span><span class="token builtin">max</span><span class="token punctuation">(</span><span class="token punctuation">)</span> <span class="token operator">+</span> <span class="token number">1</span> xx<span class="token punctuation">,</span> yy <span class="token operator">=</span> np<span class="token punctuation">.</span>meshgrid<span class="token punctuation">(</span>np<span class="token punctuation">.</span>arange<span class="token punctuation">(</span>x_min<span class="token punctuation">,</span> x_max<span class="token punctuation">,</span> h<span class="token punctuation">)</span><span class="token punctuation">,</span> np<span class="token punctuation">.</span>arange<span class="token punctuation">(</span>y_min<span class="token punctuation">,</span> y_max<span class="token punctuation">,</span> h<span class="token punctuation">)</span><span class="token punctuation">)</span> <span class="token keyword">return</span> xx<span class="token punctuation">,</span> yydef plot_contours(ax, clf, xx, yy, **params):
"""Plot the decision boundaries for a classifier.Parameters ---------- ax: matplotlib axes object clf: a classifier xx: meshgrid ndarray yy: meshgrid ndarray params: dictionary of params to pass to contourf, optional """</span> Z <span class="token operator">=</span> clf<span class="token punctuation">.</span>predict<span class="token punctuation">(</span>np<span class="token punctuation">.</span>c_<span class="token punctuation">[</span>xx<span class="token punctuation">.</span>ravel<span class="token punctuation">(</span><span class="token punctuation">)</span><span class="token punctuation">,</span> yy<span class="token punctuation">.</span>ravel<span class="token punctuation">(</span><span class="token punctuation">)</span><span class="token punctuation">]</span><span class="token punctuation">)</span> Z <span class="token operator">=</span> Z<span class="token punctuation">.</span>reshape<span class="token punctuation">(</span>xx<span class="token punctuation">.</span>shape<span class="token punctuation">)</span> out <span class="token operator">=</span> ax<span class="token punctuation">.</span>contourf<span class="token punctuation">(</span>xx<span class="token punctuation">,</span> yy<span class="token punctuation">,</span> Z<span class="token punctuation">,</span> <span class="token operator">**</span>params<span class="token punctuation">)</span> <span class="token keyword">return</span> out# import some data to play with
iris = datasets.load_iris()
# Take the first two features. We could avoid this by using a two-dim dataset
X = iris.data[:, :2]
y = iris.target# we create an instance of SVM and fit out data. We do not scale our
# data since we want to plot the support vectors
C = 1.0 # SVM regularization parameter
models = (svm.SVC(kernel='linear', C=C),
svm.LinearSVC(C=C, max_iter=10000),
svm.SVC(kernel='rbf', gamma=0.7, C=C),
svm.SVC(kernel='poly', degree=3, gamma='auto', C=C))
models = (clf.fit(X, y) for clf in models)# title for the plots
titles = ('SVC with linear kernel',
'LinearSVC (linear kernel)',
'SVC with RBF kernel',
'SVC with polynomial (degree 3) kernel')# Set-up 2x2 grid for plotting.
fig, sub = plt.subplots(2, 2)
plt.subplots_adjust(wspace=0.4, hspace=0.4)X0, X1 = X[:, 0], X[:, 1]
xx, yy = make_meshgrid(X0, X1)for clf, title, ax in zip(models, titles, sub.flatten()):
plot_contours(ax, clf, xx, yy,
cmap=plt.cm.coolwarm, alpha=0.8)
ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xlabel('Sepal length')
ax.set_ylabel('Sepal width')
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(title)
plt.show()
2. Regression
from sklearn import svm X = [[0, 0], [2, 2]] y = [0.5, 2.5] clf = svm.SVR() clf.fit(X, y)
clf.predict([[1, 1]])
3. Density estimation, novelty detection
The class OneClassSVM implements a One-Class SVM which is used in outlier detection.
from sklearn.svm import OneClassSVM X = [[0], [0.44], [0.45], [0.46], [1]] clf = OneClassSVM(gamma='auto').fit(X) clf.predict(X)
clf.score_samples(X) # doctest: +ELLIPSIS
6. Kernel functions
6.1. Custom Kernels
6.1.1. Using Python functions as kernels
import numpy as np from sklearn import svm def my_kernel(X, Y): return np.dot(X, Y.T)
clf = svm.SVC(kernel=my_kernel)
6.1.2. Using the Gram matrix
import numpy as np from sklearn import svm X = np.array([[0, 0], [1, 1]]) y = [0, 1] clf = svm.SVC(kernel='precomputed') # linear kernel computation gram = np.dot(X, X.T) clf.fit(gram, y)
# predict on training examples
clf.predict(gram)
浙公网安备 33010602011771号