摘要: import numpy as np import matplotlib.pyplot as plt a = 2 b = np.sqrt(10) c = np.sqrt(8) phi = np.arange(0, 2*np.pi+0.1, 0.1) theta = np.arange(-1, 1.1 阅读全文
posted @ 2024-10-21 21:07 Tsuki* 阅读(13) 评论(0) 推荐(0)
摘要: import numpy as np import matplotlib.pyplot as plt plt.rc('font', family='SimHei') plt.rc('axes', unicode_minus=False) k_values = [1, 2, 3, 4, 5, 6] x 阅读全文
posted @ 2024-10-21 21:04 Tsuki* 阅读(15) 评论(0) 推荐(0)
摘要: import numpy as np import matplotlib.pyplot as plt from scipy.integrate import quad def fun(t, x): return np.exp(-t) * (t ** (x - 1)) x = np.linspace( 阅读全文
posted @ 2024-10-21 21:02 Tsuki* 阅读(10) 评论(0) 推荐(0)
摘要: import numpy as np import matplotlib.pyplot as plt k_values = [1, 2, 3, 4, 5, 6] x = np.linspace(-10, 10, 100) for k in k_values: y = k * x ** 2 + 2 * 阅读全文
posted @ 2024-10-21 20:59 Tsuki* 阅读(14) 评论(0) 推荐(0)
摘要: import math import pylab as plt import numpy as np x = np.linspace(-10, 10, 100) y1 = np.cosh(x) y2 = np.sinh(x) y3 = math.e**x/2 plt.plot(x, y1, labe 阅读全文
posted @ 2024-10-21 20:57 Tsuki* 阅读(19) 评论(0) 推荐(0)
摘要: import numpy as np import math from scipy.optimize import minimize,Bounds def func(x): return sum(math.sqrt(x[i]) for i in range(100)) def con(x): ret 阅读全文
posted @ 2024-10-15 19:44 Tsuki* 阅读(10) 评论(0) 推荐(0)
摘要: import numpy as np from scipy.optimize import minimize def objective(x): return - (2 * x[0] + 3 * x[0]2 + 3 * x[1] + x[1]2 + x[2]) def con1(x): return 阅读全文
posted @ 2024-10-13 21:13 Tsuki* 阅读(26) 评论(0) 推荐(0)