数据结构小总结(成都磨子桥技工学校数据结构前12题)

这里写图片描述
[pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=34352147
暑假的作业,颓颓的我总算是写完了
这里写图片描述

线段树

线段树是一个高级玩意,不仅可以求区间和,区间最大等等的简单问题,灵活运用还有好多变种。自从学了主席树,知道了null自环这种东西后,用在线段树上也是得心应手

c3

给一个长为N的数列,有M次操作,每次操作是以下两种之一:
(1)修改数列中的一个数
(2)求数列中某连续一段的和

赤裸裸的线段树

c4

给一个长为N的数列,有M次操作,每次操作时以下三种之一:
(1)修改数列中的一个数
(2)求数列中某连续一段所有数的两两乘积的和 mod 1000000007
(3)求数列中某连续一段所有相邻两数乘积的和 mod 1000000007

数据剧毒无比,有负数,取模就出问题了。对于区间维护答案,主要就是如何合并区间。操作3好合并,只要记录每个区间的头、尾的数,把左右儿子区间的和加起来,再加上中间两个数的乘积。关键是操作2,要是没有见识过这个脑筋急转弯,我可能一辈子都不会:

给出N个数, 每次可以合并两个数, 合并的代价是两个数的乘积, 合并得到的数是两个数的和。
问最后把所有数合并成一个数的最小代价。 求这个最小代价对10^9+7取模的结果。
N <= 5000000。

题解是:

显然无论怎么合并答案都是一样的, 任意两个数的乘积恰好会对答案贡献一次。
直接搞就好了

于是这道题的操作2就迎刃而解了
由于这道题坑很多,我就不放我wa掉的代码了
大神的AC代码

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=100005;
const int mod=1000000007;
struct Node{
    int s1,s2,s3;
}node[maxn<<2];
int a[maxn];
int n,m;
int slow_mult(int a,int p){
    if(a<0)a=(a+(mod<<1))%mod;
    if(p<0)p =(p+(mod<<1))%mod;
    if(a<p)swap(a,p);
    if(p==0)return 0;
    if(p==1)return a%mod;
    int tmp=slow_mult(a,p>>1);
    if(p&1)return ((tmp<<1)%mod+a%mod)%mod;
    else return (tmp<<1)%mod;
}
inline void update(int root,int l,int r){
    node[root].s1=(node[root<<1].s1+node[root<<1|1].s1)%mod;
    node[root].s2=(node[root<<1].s2+node[root<<1|1].s2)%mod;
    int m=(l+r)>>1;
    node[root].s3=((node[root<<1].s3+node[root<<1|1].s3)%mod+slow_mult(a[m],a[m+1]))%mod;
}
void build(int root,int l,int r){
    if(l==r){
        node[root].s1=a[l];
        node[root].s2=slow_mult(a[l],a[r]);
        node[root].s3=0;
        return ;
    }
    int m=(l+r)>>1;
    build(root<<1,l,m),build(root<<1|1,m+1,r);
    update(root,l,r);
}
void modify(int root,int l,int r,int x,int val){
    if(l==r){
        node[root].s1=val;
        node[root].s2=slow_mult(val , val);
        node[root].s3=0;
        a[x]=val;
        return;
    }
    int m=(l+r)>>1;
    if(x<=m)modify(root<<1,l,m,x,val);
    else modify(root<<1|1,m+1,r,x,val);
    update(root,l,r);
}
int query1(int root,int l,int r,int x,int y){
    if(x<=l&&r<=y)return node[root].s1;
    int m=(l+r)>>1,ret=0;
    if(x<=m&&l<=y)ret+=query1(root<<1,l,m,x,y);
    if(y>=m+1&&r>=x)ret+=query1(root<<1|1,m+1,r,x,y);
    return ret % mod;
}
int query2(int root,int l,int r,int x,int y){
    if(x<=l&&r<=y)return node[root].s2;
    int m=(l+r)>>1,ret=0;
    if(x<=m&&l<=y)ret+=query2(root<<1,l,m,x,y);
    if(y>=m+1&&r>=x)ret+=query2(root<<1|1,m+1,r,x,y);
    return ret % mod;
}
int query3(int root,int l,int r,int x,int y){
    if(x<=l&&r<=y)return node[root].s3;
    int m=(l+r)>>1,ret=0,flag=1;
    if(x<=m&&l<=y)ret+=query3(root<<1,l,m,x,y),flag*=-1;
    if(y>=m+1&&r>=x)ret+=query3(root<<1|1,m+1,r,x,y),flag*=-1;
    if(flag^1)return ret%mod;
    else return(ret%mod+slow_mult(a[m],a[m+1]))%mod;
}
void read(int &res){
    int flag=1;static char ch;
    while((ch=getchar())<'0'||ch>'9')if(ch=='-')flag=-1;res=ch-48;
    while((ch=getchar())>='0'&&ch<='9')res=res*10+ch-48;res*=flag;
}
void reads(char &res){
    static char ch;
    while((ch=getchar())!='Q'&&ch!='M'&&ch!='A');res=ch;
}
int main(){
    read(n),read(m);
    for(int i=1;i<=n;i++)read(a[i]),a[i]%=mod;
    build(1,1,n);
    for(int i=1;i<=m;i++){
        char cmd;
        int x,y;
        reads(cmd);read(x),read(y);
        if(cmd=='M')modify(1,1,n,x,y%mod);
        else if(cmd=='Q'){
            int t1=query1(1,1,n,x,y);
            int t2=query2(1,1,n,x,y);
            t1=slow_mult(t1,t1);
            int tmp=t1-t2;
            if(tmp<0||tmp&1)tmp+=mod;
            if(tmp&1)tmp+=mod;
            printf("%d\n",(tmp>>1)%mod);
        }else printf("%d\n",query3(1,1,n,x,y));
    }
    return 0;
}

c5

给一个长为N的数列,有M次操作,每次操作是以下两种之一:
(1)将某连续一段同时改成一个数
(2)求数列中某连续一段的和

也是很基本的线段树

c6

给一个长为N的数列,有M次操作,每次操作是以下两种之一:
(1)修改数列中的一个数
(2)求数列中有多少个数比它前面的数都大

其实是裸的楼房重建,线段树代码见这里
然后听说这道题用分块也能过,为了练习练习,这次就用分块了

#include<cstdio>
#include<cstring> 
#include<algorithm>
#include<cmath>
#include<vector> 
using namespace std;

const int N=100000+5;
const int B=400;
const int oo=0x7fffffff;

int n,m,hh[N];
vector<int> a[B];
int blk,pos[N];

void getsort(int x){
    int maxx=-oo;
    a[x].clear();
    for(int i=(x-1)*blk+1;i<=min(n,x*blk);i++){
        if(hh[i]>maxx){
            a[x].push_back(i);
            maxx=hh[i];
        } 
    }
}
void init(){
    for(int i=1;i<=pos[n];i++){
        getsort(i);
    }
}
int erfen(int maxx,int x){
    int le=1,ri=a[x].size();
    while(le<ri){
        int mid=(le+ri)>>1;
        if(hh[a[x][mid-1]]<=maxx) le=mid+1;
        else ri=mid; 
    }
    if(hh[a[x][le-1]]<=maxx){
        return 0;
    } 
    return a[x].size()-le+1;
}
int query(){
    int ans=0,maxx=-oo;
    for(int i=1;i<=pos[n];i++){
        ans+=erfen(maxx,i);
        maxx=max(maxx,hh[a[i][a[i].size()-1]]);
    }
    return ans;
}
int main(){
    scanf("%d%d",&n,&m);
    blk=(int)sqrt((double)n);
    for(int i=1;i<=n;i++){
        scanf("%d",&hh[i]);
        pos[i]=(i-1)/blk+1;
    } 
    init();
    while(m--){
        char opt[2];
        scanf("%s",opt);
        if(opt[0]=='M'){
            int x,y;
            scanf("%d%d",&x,&y);
            hh[x]=y;
            getsort(pos[x]);
        }
        else{
            printf("%d\n",query());
        }
    }
    return 0;
}

c7

给一个长为N的数列,有M次操作,每次操作是以下两种之一:
(1)修改数列中的一个数
(2)求数列中某个值出现了多少次

在做c8之前是没有想到用值域线段树的,以为会爆空间(int级别的),就偷了个懒,用map
如何处理值域线段树的空间问题,见c8

#include<cstdio> 
#include<cstring> 
#include<map> 
#include<algorithm> 
using namespace std;

const int N=100000+5;

map<int,int> mp;
int a[N];

int main(){
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        mp[a[i]]++;
    }
    while(m--){
        char opt[2];
        scanf("%s",opt);
        if(opt[0]=='M'){
            int x,y;
            scanf("%d%d",&x,&y);
            mp[a[x]]--;
            mp[y]++;
            a[x]=y;
        }
        else{
            int x;
            scanf("%d",&x);
            printf("%d\n",mp[x]);
        }
    }
    return 0;
}

c8

给一个长为N的数列,有M次操作,每次操作是以下三种之一:
(1)插入一个数,若已存在则忽略
(2)删除一个数,若不存在则忽略
(3)求数列中任意两数之差绝对值的最小值

先不考虑空间问题,我一来就想到值域线段树。计算存在的数与最近的前后两数的差值的最小值。每个区间储存存在的最小数和最大数。合并时,左区间的ans,右区间的ans,左区间最大数和右区间的最小数的差,取min。
那么怎么处理空间大小问题呢?数据是2^31,但N,M的范围是10^5,也就是说最少都有2^31-10^5的数根本和此题无关,是浪费空间。其维护的值都是一样的,那么为什么不指向同一个空间呢?于是就把主席树里的null搬过来,不存在的值就由null代替
然后我猜数据里有负数,结果在划分区间是没注意向上还是向下取整的问题,结果T掉了,全部都加上正无穷就好了。之后又没开longlong,int加爆了。。。orz

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;

const ll oo=2147483646;
const ll N=100000+5;

ll n,m;
struct Node{
    Node *ls,*rs;
    ll ans,maxn,minn,cnt;
}*root,*null,pool[N*80],*tail=pool;

Node *newnode(){
    Node *rt=++tail;
    rt->ls=rt->rs=null;
    rt->ans=oo;
    rt->maxn=rt->minn=rt->cnt=0;
    return rt;
}
void update(Node *nd){
    nd->cnt=nd->ls->cnt+nd->rs->cnt;
    nd->ans=oo;
    if(nd->ls->cnt>1) nd->ans=min(nd->ans,nd->ls->ans);
    if(nd->rs->cnt>1) nd->ans=min(nd->ans,nd->rs->ans);
    if(nd->ls->cnt&&nd->rs->cnt) nd->ans=min(nd->ans,nd->rs->minn - nd->ls->maxn);
    if(nd->rs->cnt) nd->maxn=nd->rs->maxn;
    else nd->maxn=nd->ls->maxn;
    if(nd->ls->cnt) nd->minn=nd->ls->minn;
    else nd->minn=nd->rs->minn;
}
void insert(Node *&nd,ll le,ll ri,ll pos){
    if(nd==null) nd=newnode();
    if(le==ri){
        nd->cnt=1;
        nd->ans=oo;
        nd->maxn=nd->minn=pos;
        return;
    }
    ll mid=(le+ri)/2;
    if(pos<=mid) insert(nd->ls,le,mid,pos);
    else insert(nd->rs,mid+1,ri,pos);
    update(nd);
}
void del(Node *&nd,ll le,ll ri,ll pos){
    if(nd==null) return ;
    if(le==ri){
        nd->cnt=0;
        nd->ans=nd->maxn=nd->minn=0;
        return ;
    }
    ll mid=(le+ri)/2;
    if(pos<=mid) del(nd->ls,le,mid,pos);
    else del(nd->rs,mid+1,ri,pos);
    update(nd);
}
int main(){
    null=++tail;
    null->ls=null->rs=null;
    null->ans=null->minn=null->maxn=null->cnt=0;
    root=null;

    scanf("%lld%lld",&n,&m);
    ll a;
    for(ll i=1;i<=n;i++){
        scanf("%lld",&a);
        insert(root,0,oo+oo,a+oo);
    }
    while(m--){
        char opt[2];
        ll x;
        scanf("%s",opt);
        if(opt[0]=='I'){
            scanf("%lld",&x);
            insert(root,0,oo+oo,x+oo);
        }
        else if(opt[0]=='D'){
            scanf("%lld",&x);
            del(root,0,oo+oo,x+oo);
        }
        else {
            if(root->cnt>1) printf("%lld\n",root->ans);
            else printf("-1\n");
        }
    }
}

c10

给一个长为N的数列,有M次操作,每次操作是以下两种之一:
(1)修改数列中的一个数
(2)求数列中第K小的值

第k大问题,想来都是线段树。由于每次要修改数据,离散化不太可能,那么就用上文提到的null来节省空间(哎呀我真是太机智了,自己yy出来的诶,也算是进步吧)

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long 
using namespace std;

const ll N=100000+5;
const ll oo=2147483646;

struct Node {
    Node *ls,*rs;
    ll cnt;
}*root,*null,pool[N*80],*tail=pool;
ll n,m,a[N];

Node *newnode(){
    Node *rt=++tail;
    rt->ls=rt->rs=null;
    rt->cnt=0;
    return rt;
}
void modify(Node *&nd,ll le,ll ri,ll pos,ll val){
    if(nd==null) nd=newnode();
    if(le==ri){
        nd->cnt+=val;
        return ;
    }
    ll mid=(le+ri)>>1;
    if(pos<=mid) modify(nd->ls,le,mid,pos,val);
    else modify(nd->rs,mid+1,ri,pos,val);
    nd->cnt=nd->ls->cnt+nd->rs->cnt;
} 
ll query(Node *nd,ll le,ll ri,ll pos){
    if(le==ri)
        return le;
    ll mid=(le+ri)>>1;
    if(pos<=nd->ls->cnt) return query(nd->ls,le,mid,pos);
    else return query(nd->rs,mid+1,ri,pos-nd->ls->cnt);
}
int main(){
    null=++tail;
    null->ls=null->rs=null;
    null->cnt=0;
    root=null;

    scanf("%lld%lld",&n,&m);
    for(ll i=1;i<=n;i++){
        scanf("%lld",&a[i]);
        modify(root,0,oo+oo,a[i]+oo,1);
    }
    while(m--){
        char opt[2];
        scanf("%s",opt);
        if(opt[0]=='Q'){
            ll x;
            scanf("%lld",&x);
            printf("%lld\n",query(root,0,oo+oo,x)-oo);
        }
        else {
            ll x,y;
            scanf("%lld%lld",&x,&y);
            modify(root,0,oo+oo,a[x]+oo,-1);
            modify(root,0,oo+oo,y+oo,1);
            a[x]=y;
        }
    }
    return 0;
}

总结:
线段树可腻害可腻害了,其实很多的区间问题都可以解决,唯一的关键点就是如何快速的区间合并。俗话说“以不变应万变”,只要解决区间合并的方法就可以了。

主席树

c2

给一个空数列,有M次操作,每次操作是以下三种之一:
(1)在数列后加一个数
(2)求数列中某位置的值
(3)撤销掉最后进行的若干次操作(1和3)

感觉像是数组,又感觉像是主席树。但是数组又不易用指针写,于是一气之下杀鸡用牛刀,用线段树来解决数列问题。。。1A

#include<cstdio> 
#include<cstring> 
#include<algorithm> 
using namespace std;

const int N=100000+5;

struct Node{
    Node *ls,*rs;
    int val;
}*root[N],*null,pool[N*50],*tail=pool;
int len[N],m;

Node *newnode(){
    Node *rt=++tail;
    rt->ls=rt->rs=null;
    rt->val=0;
    return rt;
}
void insert(Node *np,Node *&nd,int le,int ri,int pos,int val){
    nd=newnode();
    nd->ls=np->ls,nd->rs=np->rs;
    nd->val=np->val;
    if(le==ri){
        nd->val=val;
        return ;
    }
    int mid=(le+ri)>>1;
    if(pos<=mid) insert(np->ls,nd->ls,le,mid,pos,val);
    else insert(nd->rs,nd->rs,mid+1,ri,pos,val);
}
int query(Node *nd,int le,int ri,int pos){
    if(le==ri) return nd->val;
    int mid=(le+ri)>>1;
    if(pos<=mid) return query(nd->ls,le,mid,pos);
    else return query(nd->rs,mid+1,ri,pos);
}
int main(){
    null=++tail;
    null->ls=null->rs=null;
    null->val=0;
    root[0]=null;

    scanf("%d",&m);
    int cnt=0;
    while(m--){
        char opt[2];
        int x;
        scanf("%s%d",opt,&x);
        if(opt[0]=='A'){
            cnt++;
            len[cnt]=len[cnt-1]+1;
            insert(root[cnt-1],root[cnt],1,N,len[cnt],x);
        }
        else if(opt[0]=='Q'){
            printf("%d\n",query(root[cnt],1,N,x));
        }
        else{
            cnt++;
            root[cnt]=root[cnt-x-1];
            len[cnt]=len[cnt-x-1]; 
        }
    }
    return 0;
}

c11

给一个长为N的数列,有M次操作,每次操作是以下两种之一:
(1)修改数列中的一个数
(2)求某次操作后连续一段的和

裸主席树,就当练手速吧

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

const int N=100000+5;

struct Node{
    Node *ls,*rs;
    int sum;
}*root[N],*null,pool[N*80],*tail=pool;
int n,m,a[N];

Node *newnode(){
    Node *rt=++tail;
    rt->ls=rt->rs=null;
    rt->sum=0;
    return rt;
}
void build(Node *&nd,int le,int ri){
    nd=newnode();
    if(le==ri){
        nd->sum=a[le];
        return ;
    }
    int mid=(le+ri)>>1;
    build(nd->ls,le,mid);
    build(nd->rs,mid+1,ri);
    nd->sum=nd->ls->sum+nd->rs->sum;
}
void insert(Node *ne,Node *&nd,int le,int ri,int pos,int val){
    nd=newnode();
    nd->ls=ne->ls,nd->rs=ne->rs;
    if(le==ri){
        nd->sum=val;
        return ;
    }
    int mid=(le+ri)>>1;
    if(pos<=mid) insert(ne->ls,nd->ls,le,mid,pos,val);
    else insert(ne->rs,nd->rs,mid+1,ri,pos,val);
    nd->sum=nd->ls->sum+nd->rs->sum;
}
int query(Node *nd,int le,int ri,int L,int R){
    if(L<=le&&ri<=R) return nd->sum;
    int mid=(le+ri)>>1,rt=0;
    if(L<=mid) rt+=query(nd->ls,le,mid,L,R);
    if(mid<R) rt+=query(nd->rs,mid+1,ri,L,R);
    return rt;
}
int main(){
    null=++tail;
    null->ls=null->rs=null;
    null->sum=0;

    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    build(root[0],1,n);
    for(int i=1;i<=m;i++){
        char opt[2];
        scanf("%s",opt);
        if(opt[0]=='M'){
            int x,y;
            scanf("%d%d",&x,&y);
            insert(root[i-1],root[i],1,n,x,y);
        }
        else{
            int x,y,z;
            scanf("%d%d%d",&x,&y,&z);
            printf("%d\n",query(root[z],1,n,x,y));
            root[i]=root[i-1];
        }
    }
    return 0;
}

c12

给一个长为N的数列,有M次操作,操作仅有一种:
求数列中某连续一段中第K小的值

还是裸的主席树,没错我是来挂代码的

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long 
using namespace std;

const ll N=100000+5;
const ll oo=2147483646;

struct Node {
    Node *ls,*rs;
    ll cnt;
}*root[N],*null,pool[N*100],*tail=pool;
ll n,m,a[N];

Node *newnode(){
    Node *rt=++tail;
    rt->ls=rt->rs=null;
    rt->cnt=0;
    return rt;
}
void insert(Node *ne,Node *&nd,ll le,ll ri,ll pos){
    nd=newnode();
    nd->ls=ne->ls,nd->rs=ne->rs;
    nd->cnt=ne->cnt+1;
    if(le==ri) return;
    ll mid=(le+ri)>>1;
    if(pos<=mid) insert(ne->ls,nd->ls,le,mid,pos);
    else insert(ne->rs,nd->rs,mid+1,ri,pos);
}
ll query(Node *ne,Node *nd,ll le,ll ri,ll k){
    if(le==ri) return le;
    ll mid=(le+ri)>>1;
    ll lsc=nd->ls->cnt - ne->ls->cnt;
    if(k<=lsc) return query(ne->ls,nd->ls,le,mid,k);
    else return query(ne->rs,nd->rs,mid+1,ri,k-lsc);
}
int main(){
    null=++tail;
    null->ls=null->rs=null;
    null->cnt=0;
    root[0]=null;

    scanf("%lld%lld",&n,&m);
    for(ll i=1;i<=n;i++){
        scanf("%lld",&a[i]);
        insert(root[i-1],root[i],0,oo+oo,a[i]+oo);
    }
    while(m--){
        ll x,y,z;
        scanf("%lld%lld%lld",&x,&y,&z);
        printf("%lld\n",query(root[x-1],root[y],0,oo+oo,z)-oo);
    }
    return 0;
}

数组

c0,c1
太简单啦,寒假做的

平衡树

c9

给一个长为N的数列,有M次操作,每次操作是以下两种之一:
(1)删除某个位置的数
(2)求数列某位置的值

一来就想到treap,但是感觉大材小用了,就偷了个懒

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;

vector<int> vec;
int n,m;

int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++){
        int a;
        scanf("%d",&a);
        vec.push_back(a);
    }
    while(m--){
        char opt[2];
        int x;
        scanf("%s%d",opt,&x);
        x--;
        if(opt[0]=='D')
            vec.erase(vec.begin()+x);
        else printf("%d\n",vec[x]);
    }
    return 0;
}

好啦,就是这样

posted @ 2017-10-31 19:09  LinnBlanc  阅读(62)  评论(0编辑  收藏