BZOJ 1041 [HAOI2008]圆上的整点:数学【费马平方和定理】

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041

题意:

  给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^2的圆周上,有多少个坐标为整数的点。

 

题解:

  科普视频:http://www.bilibili.com/video/av12131743/

  推导的大致思路:

  

  推导:

    一、17 = 4^2 + 1^2

      求圆周上有多少个点,就是求有多少个整数对(a,b)满足a^2 + b^2 = R^2。

    二、17 = (4+i)*(4-i)

      变形:a^2 + b^2 = (a + b*i) * (a - b*i) = R^2。

      其中,a + b*i 与 a - b*i 复共轭。

      也就是将R^2分解成(a + b*i) * (a - b*i)。

 

      有一个结论,对于整数a来说:

        (1)如果a为4n + 1型的素数,则a可以被分解为两个不同的高斯素数。

        (2)如果a为4n + 3型的素数,则不能被分解。因为它们不仅是普通素数,还是高斯素数。

      (即费马平方和定理:只有4n+1型的素数,才能表示成两个数的平方和)

 

      分解方法:

        (1)首先将R^2分解质因数,R^2 = a1^p1 + a2^p2 +...

        (2)然后将R^2继续分解成若干高斯素数之积。

        (3)将这些高斯素数分成两组,如果这两组各自之积复共轭,则为一对合法的(a,b)。

 

      其中,将高斯素数分组时,对于一个素因子ai,有pi+1中分组方法。

      特别地,2^k对于最终答案没有影响。

      根据乘法原理,在能够分组(分成复共轭数)的前提下,最终的分组方法数 = 4*∏(pi+1)。

      (这就是本题的做法。分解质因数,复杂度O(sqrt(N)))

 

    三、积性函数χ(n),求π的表达式(这部分跟此题无关)

      对于函数χ(n),定义为:

        (1)n = 4k + 1时,χ(n) = 1

        (2)n = 4k + 3时,χ(n) = -1

        (3)n为偶数时,χ(n) = 0

      函数χ(n)对于任意整数满足性质:χ(ab) = χ(a)*χ(b),所以χ(n)为积性函数。

      将圆上点的数量写成如下形式:

      

      即:N = 4*∏(∑ χ(ki)),ki为R^2的因子。

      将上式拆开,每一项χ(n)的n为R的因子:

      

      圆内所有点的个数:

      

      移动之后:

      

      所以得到了圆内点的个数,也就是圆面积的另一种表达形式。

      最终得到了一个π的表达式。

      

 

 

AC Code:

 1 #include <iostream>
 2 #include <stdio.h>
 3 #include <string.h>
 4 
 5 using namespace std;
 6 
 7 long long n;
 8 long long ans=1;
 9 
10 int main()
11 {
12     cin>>n;
13     n=n*n;
14     long long t=n;
15     while(!(t&1)) t>>=1;
16     for(int i=3;i*i<=n && t>1;i++)
17     {
18         int p=0;
19         while(t%i==0)
20         {
21             p++;
22             t/=i;
23         }
24         if(i%4==1) ans*=(p+1);
25         else if(i%4==3 && (p&1))
26         {
27             ans=0;
28             break;
29         }
30     }
31     if(t%4==3) ans=0;
32     cout<<ans*4<<endl;
33 }

 

posted @ 2017-10-13 21:13  Leohh  阅读(805)  评论(0编辑  收藏  举报