51nod 1514 美妙的序列

如果一个长度为 $n$ 的排列的任意一个严格前缀都不是一个 $1 \sim i$ 的排列,则称这个排列是合法的,$T$ 次求有多少长度为 $n$ 的合法的排列

$T,n \leq 10^5$

sol:

小清新多项式题,考虑 dp,$f_i$ 表示长度为 $i$ 的合法排列数量,$g_i$ 表示长度为 $i$ 的所有排列数量,考虑容斥

一个不合法的排列一定存在至少一个 $x$ 使 $[1,x]$ 是排列,$[x+1,n]$ 是排列

但因为是“至少一个”没法枚举,但发现我们可以只枚举第一个 $x$ 的位置,后面随便排就好了,因为此时已经不合法

枚举 $x$ 相当于枚举当前排列中极长的合法前缀长度,有 $g_n = \sum\limits_{i=0}^{n-1} f_i \times g_{n-i}$

然后发现是个多项式求逆的标准形式

如何求 $g_i$ 呢?很明显,$g_n = n!$

#include <bits/stdc++.h>
#define LL long long
#define rep(i, s, t) for (register int i = (s), i##end = (t); i <= i##end; ++i)
#define dwn(i, s, t) for (register int i = (s), i##end = (t); i >= i##end; --i)
using namespace std;
inline int read() {
    int x = 0, f = 1;
    char ch;
    for (ch = getchar(); !isdigit(ch); ch = getchar())
        if (ch == '-')
            f = -f;
    for (; isdigit(ch); ch = getchar()) x = 10 * x + ch - '0';
    return x * f;
}
const int maxn = 600010, mod = 998244353;
int F[maxn], G[maxn];
inline int skr(int x, int t) {
    int res = 1;
    for (; t; x = 1LL * x * x % mod, t >>= 1)
        if (t & 1)
            res = 1LL * res * x % mod;
    return res;
}
int r[maxn], lg[maxn], temp[maxn];
int inv[maxn], ifac[maxn], fac[maxn];
inline int skr(int x, LL t) {
    int res = 1;
    while (t) {
        if (t & 1)
            res = 1LL * res * x % mod;
        x = 1LL * x * x % mod;
        t = t >> 1;
    }
    return res;
}
inline void fft(int *a, int n, int type) {
    for (int i = 0; i < n; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (lg[n] - 1));
    for (int i = 0; i < n; i++)
        if (i < r[i])
            swap(a[i], a[r[i]]);
    for (int i = 1; i < n; i <<= 1) {
        int wn = skr(3, (mod - 1) / (i << 1));
        if (type == -1)
            wn = skr(wn, mod - 2);
        // cout << wn << endl;
        for (int j = 0; j < n; j += (i << 1)) {
            int w = 1;
            for (int k = 0; k < i; k++, w = (1LL * (LL)w * (LL)wn) % mod) {
                int x = a[j + k], y = (1LL * (LL)w * (LL)a[j + k + i]) % mod;
                a[j + k] = (x + y) % mod;
                a[j + k + i] = (((x - y) % mod) + mod) % mod;
            }
        }
    }
    if (type == -1) {
        int inv = skr(n, mod - 2);
        for (int i = 0; i < n; i++) a[i] = ((LL)a[i] * (LL)inv) % mod;
    }
}
inline void Inverse(int *a, int *b, int n) {
    if (n == 1) {
        b[0] = skr(a[0], mod - 2);
        return;
    }
    Inverse(a, b, n >> 1);
    memcpy(temp, a, n * sizeof(int));
    memset(temp + n, 0, n * sizeof(int));
    fft(temp, n << 1, 1);
    fft(b, n << 1, 1);
    for (int i = 0; i < (n << 1); i++)
        b[i] = 1LL * b[i] * ((2LL - 1LL * temp[i] * b[i] % mod + mod) % mod) % mod;
    fft(b, n << 1, -1);
    memset(b + n, 0, n * sizeof(int));
}
int c[maxn], d[maxn];
inline void Ln(int *a, int *b, int n) {
    Inverse(a, c, n);
    for (int i = 0; i < n - 1; ++i) d[i] = (LL)(i + 1) * a[i + 1] % mod;
    d[n - 1] = 0;
    fft(c, n << 1, 1);
    fft(d, n << 1, 1);
    for (int i = 0; i < (n << 1); ++i) c[i] = 1LL * d[i] * c[i] % mod;
    fft(c, (n << 1), -1);
    for (int i = 1; i < (n << 1); ++i) b[i] = 1LL * inv[i] * c[i - 1] % mod;
    b[0] = 0;
    for (int i = 0; i < (n << 1); ++i) c[i] = d[i] = 0;
}
int temp_w[maxn], temp_Ln[maxn];
inline void Exp(int *a, int *b, int n) {
    if (n == 1) {
        b[0] = 1;
        return;
    }
    Exp(a, b, n >> 1);
    memcpy(temp_w, b, sizeof(int) * n);
    memset(temp_w + n, 0, sizeof(int) * n);
    Ln(b, temp_Ln, n);
    for (int i = 0; i < n; i++) temp_Ln[i] = (mod + a[i] - temp_Ln[i]) % mod;
    (temp_Ln[0] += 1) %= mod;
    fft(temp_w, n << 1, 1);
    fft(temp_Ln, n << 1, 1);
    for (int i = 0; i < (n << 1); i++) temp_w[i] = 1LL * temp_w[i] * temp_Ln[i] % mod;
    fft(temp_w, n << 1, -1);
    memcpy(b, temp_w, n * sizeof(int));
    memset(b + n, 0, n * sizeof(int));
    memset(temp_w, 0, sizeof(int) * (n << 1));
    memset(temp_Ln, 0, sizeof(int) * (n << 1));
}
int main() {
    lg[0] = -1;
    rep(i, 1, 600000) lg[i] = lg[i >> 1] + 1;
    inv[1] = ifac[0] = fac[0] = 1;
    rep(i, 1, 600000) {
        if (i != 1) inv[i] = -(LL)mod / i * inv[mod % i] % mod;
        inv[i] = ((inv[i] % mod) + mod) % mod;
        ifac[i] = (LL)ifac[i - 1] * inv[i] % mod;
        fac[i] = (LL)fac[i - 1] * i % mod;
    }
    int len = 1; for(; len <= 200000; len <<= 1);
    memcpy(F, fac, sizeof(F)); Inverse(F, G, len);
    rep(i, 0, len-1) G[i] = mod - G[i]; G[0]++;
    int T = read();
    while(T--) cout << G[read()] << '\n';
}
View Code

 

posted @ 2019-04-17 11:25  探险家Mr.H  阅读(272)  评论(0编辑  收藏  举报