CF549B Looksery Party 题解
给定一张\(n\)个点的有向图,不一定联通,每个点都有一个自环.对于每个点\(i\)给出\(a_i\),试构造一种选点方案使得每个点的入度都不等于\(a_i\).
容易发现,对于\(a_i=0\)的点,我们必须将它们选进去.选入之后我们将该点所指向的点\(a_i\)减一,实际上相当于比较方便地统计当前选点产生的对其他点的入度.每次选出\(a_i=0\)的点,重复上述操作,正确性显然.同时也说明并不存在无解的情况.
#include <iostream>
#include <cstdio>
#include <assert.h>
using namespace std;
const int N = 105;
struct edge
{
int to, next;
} e[N * N];
int cnt, head[N];
void add(int u, int v)
{
e[++cnt].to = v;
e[cnt].next = head[u];
head[u] = cnt;
}
int n;
int a[N], p[N], ans;
int main()
{
ios::sync_with_stdio(false);
cin >> n;
for (int i = 1; i <= n; i++)
{
string s;
cin >> s;
for (int j = 0; j < s.length(); j++)
if (s[j] == '1')
add(i, j + 1);
}
for (int i = 1; i <= n; i++)
cin >> a[i];
while (1)
{
bool flag = false;
for (int i = 1; i <= n; i++)
if (a[i] == 0 && !p[i])
{
ans++;
p[i] = 1;
flag = true;
for (int j = head[i]; j; j = e[j].next)
a[e[j].to]--;
break;
}
if (!flag)
break;
}
cout << ans << endl;
for (int i = 1; i <= n; i++)
if (p[i])
cout << i << " ";
cout << endl;
}
本文来自博客园,作者:Kinuhata,转载请注明原文链接:https://www.cnblogs.com/KinuhataSaiai/p/15520085.html