[LeetCode] 703. Kth Largest Element in a Stream_Easy tag: Heap
2021-06-28 10:41 Johnson_强生仔仔 阅读(32) 评论(0) 收藏 举报Design a class to find the kth largest element in a stream. Note that it is the kth largest element in the sorted order, not the kth distinct element.
Implement KthLargest class:
KthLargest(int k, int[] nums)Initializes the object with the integerkand the stream of integersnums.int add(int val)Returns the element representing thekthlargest element in the stream.
Example 1:
Input ["KthLargest", "add", "add", "add", "add", "add"] [[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]] Output [null, 4, 5, 5, 8, 8] Explanation KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]); kthLargest.add(3); // return 4 kthLargest.add(5); // return 5 kthLargest.add(10); // return 5 kthLargest.add(9); // return 8 kthLargest.add(4); // return 8
Constraints:
1 <= k <= 1040 <= nums.length <= 104-104 <= nums[i] <= 104-104 <= val <= 104- At most
104calls will be made toadd. - It is guaranteed that there will be at least
kelements in the array when you search for thekthelement.
Ideas: 利用heap, 先建立一个min heap, 然后每次保证heap的size <= k, 即可。
class KthLargest: def __init__(self, k: int, nums: List[int]): self.heap = nums self.k = k heapq.heapify(self.heap) def add(self, val: int) -> int: heapq.heappush(self.heap, val) while len(self.heap) > k: heapq.heappop(self.heap) return self.heap[0]
2. 在initial的时候就将其做成size 最多为k的heap, 后面每次add val的时候,如果val 比heap[0] 小就不用管了, 每次add可以节省logk的时间复杂度。
class KthLargest: def __init__(self, k: int, nums: List[int]): self.heap = nums self.k = k heapq.heapify(self.heap) while len(self.heap) > self.k: heapq.heappop(self.heap) def add(self, val: int) -> int: if len(self.heap) < self.k: heapq.heappush(self.heap, val) elif val > self.heap[0]: heapq.heapreplace(self.heap, val) return self.heap[0]
浙公网安备 33010602011771号