LightRAG API Server的Docker部署
LightRAG API Server的Docker部署
0. LightRAG是什么?
LightRAG 是一个轻量级的检索增强生成(Retrieval-Augmented Generation, RAG)框架,旨在高效结合信息检索与生成式模型(如大语言模型),以提升文本生成任务的质量和准确性。以下是其核心特点和应用场景:
0.1 核心特点
-
轻量化设计
- 优化计算和存储资源,适合资源受限场景(如边缘设备或中小型企业)。
- 可能采用高效的向量检索库(如FAISS或Annoy)或压缩模型来减少内存占用。
-
检索与生成结合
- 检索阶段:从外部知识库(如文档、数据库)中检索与输入问题相关的上下文。
- 生成阶段:将检索到的上下文输入生成模型(如GPT、LLaMA),生成更准确的回答。
-
模块化架构
- 支持灵活配置检索器(如BM25、稠密检索器)和生成模型,适配不同任务需求。
-
性能优化
- 可能通过缓存检索结果、批处理请求或蒸馏模型来加速推理。
0.2 应用场景
- 问答系统:提供基于事实的精准回答,减少模型幻觉。
- 客服机器人:动态检索产品文档生成响应。
- 内容创作:辅助生成基于检索数据的报告或摘要。
0.3 与经典RAG的区别
- 效率:更注重低延迟和资源消耗,适合实时或端侧部署。
- 易用性:可能提供简化API或预置流程,降低实现门槛。
1. 下载源码
git clone https://github.com/HKUDS/LightRAG.git
2. 修改requirements.txt
官网的依赖里面少了几个依赖,不知道后面会不会修复,可以作为一个检查项
# 增加以下依赖项
python-docx
pycryptodome
3. 修改Dockerfile(支持国内源)
官方的Dockerfile里面的安装扩展依赖没有支持国内的源,下载非常缓慢
# Build stage
FROM python:3.11-slim AS builder
WORKDIR /app
# 清空原有源
RUN echo "" > /etc/apt/sources.list && \
rm -f /etc/apt/sources.list.d/* # 删除额外源文件
# 添加阿里云源
RUN echo "deb https://mirrors.aliyun.com/debian/ bookworm main contrib non-free" > /etc/apt/sources.list && \
echo "deb https://mirrors.aliyun.com/debian/ bookworm-updates main contrib non-free" >> /etc/apt/sources.list && \
echo "deb https://mirrors.aliyun.com/debian-security bookworm-security main contrib non-free" >> /etc/apt/sources.list
# Install Rust and required build dependencies
RUN apt-get update && apt-get install -y \
curl \
build-essential \
pkg-config \
&& rm -rf /var/lib/apt/lists/* \
&& curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y \
&& . $HOME/.cargo/env
# Copy only requirements files first to leverage Docker cache
COPY requirements.txt .
COPY lightrag/api/requirements.txt ./lightrag/api/
# Install dependencies
ENV PATH="/root/.cargo/bin:${PATH}"
RUN pip install --user --no-cache-dir -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
RUN pip install --user --no-cache-dir -r lightrag/api/requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
# Final stage
FROM python:3.11-slim
WORKDIR /app
# Copy only necessary files from builder
COPY --from=builder /root/.local /root/.local
COPY ./lightrag ./lightrag
COPY setup.py .
RUN pip install .
# Make sure scripts in .local are usable
ENV PATH=/root/.local/bin:$PATH
# Create necessary directories
RUN mkdir -p /app/data/rag_storage /app/data/inputs
# Docker data directories
ENV WORKING_DIR=/app/data/rag_storage
ENV INPUT_DIR=/app/data/inputs
# Expose the default port
EXPOSE 9621
# Set entrypoint
ENTRYPOINT ["python", "-m", "lightrag.api.lightrag_server"]
4. 修改docker-compose文件
增加pgvector服务,用来存储pgvector
services:
pgvector:
image: pgvector/pgvector:pg16
profiles:
- pgvector
restart: always
environment:
PGUSER: ${PGVECTOR_PGUSER:-postgres}
# The password for the default postgres user.
POSTGRES_PASSWORD: ${PGVECTOR_POSTGRES_PASSWORD:-lightrag123456}
# The name of the default postgres database.
POSTGRES_DB: ${PGVECTOR_POSTGRES_DB:-lightrag}
# postgres data directory
PGDATA: ${PGVECTOR_PGDATA:-/var/lib/postgresql/data/pgdata}
# pg_bigm module for full text search
PG_BIGM: ${PGVECTOR_PG_BIGM:-false}
PG_BIGM_VERSION: ${PGVECTOR_PG_BIGM_VERSION:-1.2-20240606}
volumes:
- ./volumes/pgvector/data:/var/lib/postgresql/data
- ./pgvector/docker-entrypoint.sh:/docker-entrypoint.sh
entrypoint: [ '/docker-entrypoint.sh' ]
networks:
- lightrag-net
healthcheck:
test: [ 'CMD', 'pg_isready' ]
interval: 1s
timeout: 3s
retries: 30
lightrag:
image: lightrag:latest
ports:
- "${PORT:-9621}:9621"
volumes:
- ./data/rag_storage:/app/data/rag_storage
- ./data/inputs:/app/data/inputs
- ./config.ini:/app/config.ini
- ./.env:/app/.env
env_file:
- .env
networks:
- lightrag-net
restart: unless-stopped
networks:
lightrag-net:
注意:pgvector的docker-entrypoint.sh文件如下,主要是安装vector的扩展
- docker-entrypoint.sh
#!/bin/bash
PG_MAJOR=16
if [ "${PG_BIGM}" = "true" ]; then
# install pg_bigm
apt-get update
apt-get install -y curl make gcc postgresql-server-dev-${PG_MAJOR}
curl -LO https://github.com/pgbigm/pg_bigm/archive/refs/tags/v${PG_BIGM_VERSION}.tar.gz
tar xf v${PG_BIGM_VERSION}.tar.gz
cd pg_bigm-${PG_BIGM_VERSION} || exit 1
make USE_PGXS=1 PG_CONFIG=/usr/bin/pg_config
make USE_PGXS=1 PG_CONFIG=/usr/bin/pg_config install
cd - || exit 1
rm -rf v${PG_BIGM_VERSION}.tar.gz pg_bigm-${PG_BIGM_VERSION}
# enable pg_bigm
sed -i -e 's/^#\s*shared_preload_libraries.*/shared_preload_libraries = '\''pg_bigm'\''/' /var/lib/postgresql/data/pgdata/postgresql.conf
fi
# Run the original entrypoint script
exec /usr/local/bin/docker-entrypoint.sh postgres
5. 修改.env文件
首先执行
cp env.example .env
复制env文件
### This is sample file of .env
### Server Configuration
# HOST=0.0.0.0
# PORT=9621
# WORKERS=1
# NAMESPACE_PREFIX=lightrag # separating data from difference Lightrag instances
# MAX_GRAPH_NODES=1000 # Max nodes return from grap retrieval
# CORS_ORIGINS=http://localhost:3000,http://localhost:8080
### Optional SSL Configuration
# SSL=true
# SSL_CERTFILE=/path/to/cert.pem
# SSL_KEYFILE=/path/to/key.pem
### Directory Configuration
# WORKING_DIR=<absolute_path_for_working_dir>
# INPUT_DIR=<absolute_path_for_doc_input_dir>
### Ollama Emulating Model Tag
# OLLAMA_EMULATING_MODEL_TAG=latest
### Logging level
# LOG_LEVEL=INFO
# VERBOSE=False
# LOG_DIR=/path/to/log/directory # Log file directory path, defaults to current working directory
# LOG_MAX_BYTES=10485760 # Log file max size in bytes, defaults to 10MB
# LOG_BACKUP_COUNT=5 # Number of backup files to keep, defaults to 5
### Settings for RAG query
# HISTORY_TURNS=3
# COSINE_THRESHOLD=0.2
# TOP_K=60
# MAX_TOKEN_TEXT_CHUNK=4000
# MAX_TOKEN_RELATION_DESC=4000
# MAX_TOKEN_ENTITY_DESC=4000
### Settings for document indexing
ENABLE_LLM_CACHE_FOR_EXTRACT=true # Enable LLM cache for entity extraction
SUMMARY_LANGUAGE=Chinese
# CHUNK_SIZE=1200
# CHUNK_OVERLAP_SIZE=100
# MAX_TOKEN_SUMMARY=500 # Max tokens for entity or relations summary
# MAX_PARALLEL_INSERT=2 # Number of parallel processing documents in one patch
# EMBEDDING_BATCH_NUM=32 # num of chunks send to Embedding in one request
# EMBEDDING_FUNC_MAX_ASYNC=16 # Max concurrency requests for Embedding
# MAX_EMBED_TOKENS=8192
### LLM Configuration (Use valid host. For local services installed with docker, you can use host.docker.internal)
TIMEOUT=150 # Time out in seconds for LLM, None for infinite timeout
TEMPERATURE=0.5
MAX_ASYNC=4 # Max concurrency requests of LLM
MAX_TOKENS=32768 # Max tokens send to LLM (less than context size of the model)
#LLM_BINDING=ollama
#LLM_MODEL=mistral-nemo:latest
#LLM_BINDING_API_KEY=AAAAC3NzaC1lZDI1NTE5AAAAIMQGe4YM+6r7Q3Aw7I8PiAmfR+UZZ1DLa+j0YLYl2SPl
### Ollama example
#LLM_BINDING_HOST=http://192.168.86.109:11434
### OpenAI alike example
LLM_BINDING=openai
LLM_MODEL=deepseek-chat
LLM_BINDING_HOST=https://api.deepseek.com
LLM_BINDING_API_KEY=替换成你自己的api-key
### lollms example
# LLM_BINDING=lollms
# LLM_MODEL=mistral-nemo:latest
# LLM_BINDING_HOST=http://localhost:9600
# LLM_BINDING_API_KEY=your_api_key
### Embedding Configuration (Use valid host. For local services installed with docker, you can use host.docker.internal)
EMBEDDING_MODEL=bge-m3:latest
EMBEDDING_DIM=1024
# EMBEDDING_BINDING_API_KEY=your_api_key
### ollama example
EMBEDDING_BINDING=ollama
EMBEDDING_BINDING_HOST=http://192.168.86.109:11434
### OpenAI alike example
# EMBEDDING_BINDING=openai
# LLM_BINDING_HOST=https://api.openai.com/v1
### Lollms example
# EMBEDDING_BINDING=lollms
# EMBEDDING_BINDING_HOST=http://localhost:9600
### Optional for Azure (LLM_BINDING_HOST, LLM_BINDING_API_KEY take priority)
# AZURE_OPENAI_API_VERSION=2024-08-01-preview
# AZURE_OPENAI_DEPLOYMENT=gpt-4o
# AZURE_OPENAI_API_KEY=your_api_key
# AZURE_OPENAI_ENDPOINT=https://myendpoint.openai.azure.com
# AZURE_EMBEDDING_DEPLOYMENT=text-embedding-3-large
# AZURE_EMBEDDING_API_VERSION=2023-05-15
### Data storage selection
LIGHTRAG_KV_STORAGE=PGKVStorage
LIGHTRAG_VECTOR_STORAGE=PGVectorStorage
# LIGHTRAG_VECTOR_STORAGE=NanoVectorDBStorage
# LIGHTRAG_GRAPH_STORAGE=PGGraphStorage
LIGHTRAG_GRAPH_STORAGE=NetworkXStorage
LIGHTRAG_DOC_STATUS_STORAGE=PGDocStatusStorage
### Oracle Database Configuration
ORACLE_DSN=localhost:1521/XEPDB1
ORACLE_USER=your_username
ORACLE_PASSWORD='your_password'
ORACLE_CONFIG_DIR=/path/to/oracle/config
#ORACLE_WALLET_LOCATION=/path/to/wallet # optional
#ORACLE_WALLET_PASSWORD='your_password' # optional
#ORACLE_WORKSPACE=default # separating all data from difference Lightrag instances(deprecated, use NAMESPACE_PREFIX in future)
### TiDB Configuration
TIDB_HOST=localhost
TIDB_PORT=4000
TIDB_USER=your_username
TIDB_PASSWORD='your_password'
TIDB_DATABASE=your_database
#TIDB_WORKSPACE=default # separating all data from difference Lightrag instances(deprecated, use NAMESPACE_PREFIX in future)
### PostgreSQL Configuration
POSTGRES_HOST=pgvector
POSTGRES_PORT=5432
POSTGRES_USER=postgres
POSTGRES_PASSWORD='lightrag123456'
POSTGRES_DATABASE=lightrag
#POSTGRES_WORKSPACE=default # separating all data from difference Lightrag instances(deprecated, use NAMESPACE_PREFIX in future)
### Independent AGM Configuration(not for AMG embedded in PostreSQL)
AGE_POSTGRES_DB=
AGE_POSTGRES_USER=
AGE_POSTGRES_PASSWORD=
AGE_POSTGRES_HOST=
# AGE_POSTGRES_PORT=8529
# AGE Graph Name(apply to PostgreSQL and independent AGM)
# AGE_GRAPH_NAME=lightrag # deprecated, use NAME_SPACE_PREFIX instead
### Neo4j Configuration
NEO4J_URI=neo4j+s://xxxxxxxx.databases.neo4j.io
NEO4J_USERNAME=neo4j
NEO4J_PASSWORD='your_password'
### MongoDB Configuration
MONGO_URI=mongodb://root:root@localhost:27017/
MONGO_DATABASE=LightRAG
MONGODB_GRAPH=false # deprecated (keep for backward compatibility)
### Milvus Configuration
MILVUS_URI=http://localhost:19530
MILVUS_DB_NAME=lightrag
# MILVUS_USER=root
# MILVUS_PASSWORD=your_password
# MILVUS_TOKEN=your_token
### Qdrant
QDRANT_URL=http://localhost:6333
# QDRANT_API_KEY=your-api-key
### Redis
REDIS_URI=redis://localhost:6379
### For JWT Auth
AUTH_ACCOUNTS='admin:admin123,user1:pass456' # username:password,username:password
TOKEN_SECRET=Your-Key-For-LightRAG-API-Server # JWT key
TOKEN_EXPIRE_HOURS=4 # expire duration
### API-Key to access LightRAG Server API
# LIGHTRAG_API_KEY=your-secure-api-key-here
# WHITELIST_PATHS=/health,/api/*
6. 配置Embedding模型
建议使用ollama的
bge-m3:latest
这个Embedding模型,只有1.2G,ollama使用cpu也可以轻松支持可以使用主机部署,也可以使用docker部署,具体可以查看官方文档
也可以使用别的Embedding模型的API
-
[ollama官方主机安装文档](ollama/README.md at main · ollama/ollama · GitHub)
-
[ollama官方docker安装文档](ollama/docs/docker.md at main · ollama/ollama · GitHub)
7. 配置LLM模型
如果有GPU版本的ollama,应该也是可以轻松胜任,使用官方推荐的
mistral-nemo:latest
模型我这直接使用deepseek的
deepseek-chat
模型了,可以根据个人情况注意:CPU版本的ollama是支撑不了
mistral-nemo:latest
模型的!
8. 构建lightrag
镜像
docker build -t lightrag:latest .
9. docker-compose部署
docker-compose -f docker-compose.yml --profile pgvector up -d
- --profile pgvector 表示使用pgvector作为数据库,如果使用默认的可以不用这个指令
10. 验证服务
-
登录
http:IP:9621
-
默认密码:admin/admin123 这个在.env文件中可以自主修改
11 Q&A
1. 如果遇到数据库表创建失败,报错:vector type缺失,则需要创建一些PG的EXTENSION
# 首先登录进入pgsql数据库
psql -U postgres -d pgsql
# 查看扩展
\dx
# 确认没有vector后创建扩展
CREATE EXTENSION vector;
# 然后再查看
\dx
最后
如果还有其他的问题可以视具体遇到的问题再逐一解决。
GOOD LUCK!