摘要:         金融社区优惠文章是基于京东商城优惠商品批量化自动生成的,每日通过不同的渠道获取到待生成的SKU列表,并根据条件生成优惠文章。
但是,生成优惠文章之后续衍生问题:该商品无优惠了,对应文章需要做取消推荐或下架处理,怎样能更快的知道该商品无优惠了呢?    阅读全文
金融社区优惠文章是基于京东商城优惠商品批量化自动生成的,每日通过不同的渠道获取到待生成的SKU列表,并根据条件生成优惠文章。
但是,生成优惠文章之后续衍生问题:该商品无优惠了,对应文章需要做取消推荐或下架处理,怎样能更快的知道该商品无优惠了呢?    阅读全文
         金融社区优惠文章是基于京东商城优惠商品批量化自动生成的,每日通过不同的渠道获取到待生成的SKU列表,并根据条件生成优惠文章。
但是,生成优惠文章之后续衍生问题:该商品无优惠了,对应文章需要做取消推荐或下架处理,怎样能更快的知道该商品无优惠了呢?    阅读全文
金融社区优惠文章是基于京东商城优惠商品批量化自动生成的,每日通过不同的渠道获取到待生成的SKU列表,并根据条件生成优惠文章。
但是,生成优惠文章之后续衍生问题:该商品无优惠了,对应文章需要做取消推荐或下架处理,怎样能更快的知道该商品无优惠了呢?    阅读全文
            posted @ 2023-01-31 12:53
京东云开发者
阅读(563)
评论(0)
推荐(3)
        
        
            
        
        
摘要:         在早期参与涅槃氛围标签中台项目中,前台要求接口性能999要求50ms以下,通过设计Caffeine、ehcache堆外缓存、jimDB三级缓存,利用内存、堆外、jimDB缓存不同的特性提升接口性能, 内存缓存采用Caffeine缓存,利用W-TinyLFU算法获得更高的内存命中率;同时利用堆外缓存降低内存缓存大小,减少GC频率,同时也减少了网络IO带来的性能消耗;利用JimDB提升接口高可用、高并发;后期通过压测及性能调优999性能<20ms。    阅读全文
在早期参与涅槃氛围标签中台项目中,前台要求接口性能999要求50ms以下,通过设计Caffeine、ehcache堆外缓存、jimDB三级缓存,利用内存、堆外、jimDB缓存不同的特性提升接口性能, 内存缓存采用Caffeine缓存,利用W-TinyLFU算法获得更高的内存命中率;同时利用堆外缓存降低内存缓存大小,减少GC频率,同时也减少了网络IO带来的性能消耗;利用JimDB提升接口高可用、高并发;后期通过压测及性能调优999性能<20ms。    阅读全文
         在早期参与涅槃氛围标签中台项目中,前台要求接口性能999要求50ms以下,通过设计Caffeine、ehcache堆外缓存、jimDB三级缓存,利用内存、堆外、jimDB缓存不同的特性提升接口性能, 内存缓存采用Caffeine缓存,利用W-TinyLFU算法获得更高的内存命中率;同时利用堆外缓存降低内存缓存大小,减少GC频率,同时也减少了网络IO带来的性能消耗;利用JimDB提升接口高可用、高并发;后期通过压测及性能调优999性能<20ms。    阅读全文
在早期参与涅槃氛围标签中台项目中,前台要求接口性能999要求50ms以下,通过设计Caffeine、ehcache堆外缓存、jimDB三级缓存,利用内存、堆外、jimDB缓存不同的特性提升接口性能, 内存缓存采用Caffeine缓存,利用W-TinyLFU算法获得更高的内存命中率;同时利用堆外缓存降低内存缓存大小,减少GC频率,同时也减少了网络IO带来的性能消耗;利用JimDB提升接口高可用、高并发;后期通过压测及性能调优999性能<20ms。    阅读全文
            posted @ 2023-01-31 10:12
京东云开发者
阅读(300)
评论(0)
推荐(0)
        
        
 
                    
                     
                    
                 
                    
                 
         浙公网安备 33010602011771号
浙公网安备 33010602011771号