区间问题

区间问题

ST表(静态区间查找)

​ ST表是利用倍增思想来缩短时间的,数组 f[i][j] 的含义,从第 i 个元素开始,向后连续 2^j 个元素组成的区间内的最值(最大值或最小值,需提前确定)。

\[f[i][j] = \max\left(f[i][j-1],\ f\left[i + 2^{j-1}\right][j-1]\right) \]

void solved()
{
    int n, t;
    cin >> n >> t;
    for (int i = 1; i <= n; i++)
        cin >> stmax[i][0];

    for (int j = 1; (1 << j) <= n; j++)
    {
        for (int i = 1; i + (1 << j) - 1 <= n; i++)
        {
            stmax[i][j] = max(stmax[i][j - 1], stmax[i + (1 << (j - 1))][j - 1]);
        }
    }

    while (t--)
    {
        int l, r;
        cin >> l >> r;
        int s = log2(r - l + 1);
        cout << max(stmax[l][s], stmax[r + 1 - (1 << s)][s]) << endl;
    }
}

树状数组

单修区查

int lowbit(int x)
{
    return x & -x;
}

int query(int x)
{
    int sum = 0;
    for(int i = x; i; i -=lowbit(i)){
        sum += c[i];
    }
    return sum;
}

void update(int x, int v)
{
    for(int i = x; i <= n; i += lowbit(i))
    {
        c[i] += v;
    }
}
void solved()
{
    
    cin >> n >> t;
    for (int i = 1; i <= n; i++)
    {
        cin >> arr[i];
        update(i, arr[i]);
    }

    while(t --){
        int op, x, y, k;
        cin >> op;
        if(op == 1){
            cin >> x >> k;
            update(x, k);
        }
        else {
            cin >> x >> y;
            cout << query(y) - query(x - 1) << endl;
        }
    }
}

区修单查(差分)

​ 把t[i]构建成差分数组,query(x)时求(1, x)前缀和就是点x的值

//构建差分数组
update(i, x - last);
//修改区间
update(x, k);
update(y + 1, -k);

区修区查

int lowbit(int x)
{
    return x & -x;
}

void update(int x, LL c) 
{
    for (int i = x; i <= n; i += lowbit(i)){
        b1[i] += c, b2[i] += x * c;
    }
}

LL query(int x)  
{
    LL res = 0;
    for (int i = x; i; i -= lowbit(i)){
        res += (x + 1) * b1[i] - b2[i];
    }
    return res;
}


题目链接二维模板题

二维树状数组模板(区修区查),公式推导过程太复杂,记下就好(其实就是不会)_ 根二维差分数组类似

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;

const int N = 2050;

int n, m ,q;

LL a[N][N], b[N][N], c[N][N], d[N][N];

int lowbit(int x){
    return x & -x;
}

void add(int x, int y, LL w){
    for(int i = x; i <= n; i += lowbit(i)){
        for(int j = y; j <= m; j += lowbit(j)){
            a[i][j] += w;
            b[i][j] += (x - 1) * w;
            c[i][j] += (y - 1) * w;
            d[i][j] += (x - 1) * (y - 1) * w;
        }
    }
}

LL query(int x, int y){
    LL res = 0;
    for(int i = x; i > 0; i -= lowbit(i)){
        for(int j = y; j > 0; j -= lowbit(j)){
            res += x * y * a[i][j] 
                - y * b[i][j]
                - x * c[i][j]
                + d[i][j];
        }
    }
    return res;
}

int main() {
   
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    cin >> n >> m >> q;
    
    while (q --) {
        int op, x1, y1, x2, y2;
        cin >> op >> x1 >> y1 >> x2 >> y2;
        if (op == 1) {
            LL v;
            cin >> v;
            add(x1, y1, v);
            add(x1, y2 + 1, -v);
            add(x2 + 1, y1, -v);
            add(x2 + 1, y2 + 1, v);
        } else {
            cout << 
                query(x2, y2) 
                - query(x1 - 1, y2) 
                - query(x2, y1 - 1) 
                + query(x1 - 1, y1 - 1)
            << '\n';
        }
    }
}

线段树

单修区查

struct node
{
    int l, r, sum;
} tree[4 * N];

void build(int i, int l, int r)
{
    tree[i].l = l;
    tree[i].r = r;
    if (l == r)
    {
        tree[i].sum = arr[l];
        return;
    }
    int mid = (l + r) >> 1;
    build(i * 2, l, mid);
    build(i * 2 + 1, mid + 1, r);
    tree[i].sum = tree[i * 2].sum + tree[i * 2 + 1].sum;
}

void update(int i, int x, int k)
{
    if (tree[i].l == tree[i].r)
    {
        tree[i].sum += k;
        return;
    }
    if (x <= tree[i * 2].r)
        update(i * 2, x, k);
    else
        update(i * 2 + 1, x, k);
    tree[i].sum = tree[i * 2].sum + tree[i * 2 + 1].sum;
}

int query(int i, int l, int r)
{
    if (tree[i].l >= l && tree[i].r <= r)
    {
        return tree[i].sum;
    }
    if (tree[i].l > r || tree[i].r < l)
        return 0;

    int res = 0;
    if (tree[i * 2].r >= l)
        res += query(i * 2, l, r);
    if (tree[i * 2 + 1].l <= r)
        res += query(i * 2 + 1, l, r);
    return res;
}

区修区查(lazy 延迟更新)

​ 线段树的区间更新(如给 [L, R] 内所有元素加 delta),如果不使用懒标记,需要递归遍历所有与 [L, R] 重叠的叶子节点并逐个更新,在最坏情况下(如更新整个数组)时间复杂度为 O (n),效率极低。

​ 当更新的区间完全覆盖某个节点的区间时,不立即更新该节点的子节点,而是给该节点打上一个 “标记”,记录需要更新的内容。只有当后续操作(如查询、再次更新)需要访问该节点的子节点时,才将标记 “下推” 到子节点,确保子节点的状态正确。

struct node
{
    int l, r, sum, lazy;
} tree[4 * N];

void build(int i, int l, int r)
{
    tree[i].l = l;
    tree[i].r = r;
    tree[i].lazy = 0;
    tree[i].sum = 0;
    if (l == r)
    {
        tree[i].sum = arr[l];
        return;
    }
    int mid = (l + r) >> 1;
    build(i * 2, l, mid);
    build(i * 2 + 1, mid + 1, r);
    tree[i].sum = tree[i * 2].sum + tree[i * 2 + 1].sum;
}

void pushdown(int i)
{
    if (tree[i].lazy)
    {
        tree[i * 2].lazy += tree[i].lazy;
        tree[i * 2 + 1].lazy += tree[i].lazy;
        int mid = (tree[i].l + tree[i].r) >> 1;
        tree[i * 2].sum += tree[i].lazy * (mid - tree[i * 2].l + 1);
        tree[i * 2 + 1].sum += tree[i].lazy * (tree[i * 2 + 1].r - mid + 1);
        tree[i].lazy = 0;
    }
}
void update(int i, int l, int r, int k)
{
    if (tree[i].l >= l && tree[i].r <= r)
    {
        tree[i].sum += k * (tree[i].r - tree[i].l + 1);
        tree[i].lazy += k;
        return;
    }
    pushdown(i);
    if (tree[i * 2].r >= l)
        update(i * 2, l, r, k);
    if (tree[i * 2 + 1].l <= r)
        update(i * 2 + 1, l, r, k);
    tree[i].sum = tree[i * 2].sum + tree[i * 2 + 1].sum;
}

int query(int i, int l, int r)
{
    if (tree[i].l >= l && tree[i].r <= r)
    {
        return tree[i].sum;
    }
    if (tree[i].l > r || tree[i].r < l)
        return 0;
    pushdown(i);
    int res = 0;
    if (tree[i * 2].r >= l)
        res += query(i * 2, l, r);
    if (tree[i * 2 + 1].l <= r)
        res += query(i * 2 + 1, l, r);
    return res;
}
posted @ 2025-09-19 20:33  catis  阅读(4)  评论(0)    收藏  举报