UVA11255 Necklace Burnside、组合

VJ传送门


因为有每种颜色个数的限制,所以不能使用Polya

考虑退一步,使用Burnside引理求解

回忆一下Burnside引理,它需要求的是置换群中每一个置换的不动点个数,也就是施加一次置换之后新状态与原状态相同的状态个数。而施加一次置换之后状态不变的充要条件是:对于这个置换中的每一个循环,循环中所有位置的颜色都相同。

为了叙述方便,约定\(f(i,j,k,l) = \frac{i!}{j!k!l!}\)

首先考虑旋转。假设某一种旋转置换使得\(i\)位置的珠子变到\(i+k\)位置\((k \in [1,N] , N = a+b+c)\),不难知道这个置换是由\(gcd(N,k)\)\(\frac{N}{gcd(N,k)}\)阶循环构成的。

假设\(\frac{N}{gcd(N,k)} | a\ \&\&\ \frac{N}{gcd(N,k)} | b\ \&\&\ \frac{N}{gcd(N,k)} | c\)(如果这个条件不成立显然没有方案),那么这\(gcd(N,k)\)个循环中有\(\frac{a}{\frac{N}{gcd(N,k)}}\)个是全白色,\(\frac{b}{\frac{N}{gcd(N,k)}}\)个是全灰色,\(\frac{c}{\frac{N}{gcd(N,k)}}\)个是全黑色,这是一个本质不同的可重排列计数问题,染色方案有\(f(gcd(N,k) , \frac{a}{\frac{N}{gcd(N,k)}} ,\frac{b}{\frac{N}{gcd(N,k)}}, \frac{c}{\frac{N}{gcd(N,k)}})\)

接着考虑翻转。这里需要分类讨论一下:

\(2 \not\mid N\),意味着所有的轴会且只会经过一个珠子。在这种情况下,总共有\(N\)种翻转置换,每一个置换都是由\(1\)\(1\)阶循环和\(\frac{N-1}{2}\)\(2\)阶循环组成。枚举这一个\(1\)阶循环的颜色,那么不动点个数为\((f(\frac{N - 1}{2} , \frac{a - 1}{2} , \frac{b}{2} , \frac{c}{2}) + f(\frac{N - 1}{2} , \frac{a}{2} , \frac{b - 1}{2} , \frac{c}{2}) + f(\frac{N - 1}{2} , \frac{a}{2} , \frac{b}{2} , \frac{c - 1}{2}) ) \times N\)

\(2 | N\),意味着有\(\frac{N}{2}\)个轴不经过珠子,有\(\frac{N}{2}\)个对称轴经过\(2\)个珠子,跟上面一样枚举\(1\)阶循环的颜色计算答案,式子太长不想写了留给读者自行思考

还有这道题似乎要写高精

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<ctime>
#include<cctype>
#include<algorithm>
#include<cstring>
#include<iomanip>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<vector>
#include<cmath>
//This code is written by Itst
using namespace std;

inline int read(){
	int a = 0;
	char c = getchar();
	bool f = 0;
	while(!isdigit(c) && c != EOF){
		if(c == '-')
			f = 1;
		c = getchar();
	}
	if(c == EOF)
		exit(0);
	while(isdigit(c)){
		a = a * 10 + c - 48;
		c = getchar();
	}
	return f ? -a : a;
}

struct Bignum{
	int a[107];
	int& operator [](int x){return a[x];}
	Bignum(int b = 0){
		memset(a , 0 , sizeof(a));
		a[0] = 0;
		while(b){
			a[++a[0]] = b % 10;
			b /= 10;
		}
	}
	Bignum operator =(int b){
		return *this = Bignum(b);
	}
	void input(){
		string s;
		cin >> s;
		a[0] = s.size();
		for(int i = 1 ; i <= a[0] ; ++i)
			a[i] = s[s.size() - i] - '0';
	}
	void output(){
		if(!a[0])
			putchar('0');
		for(int i = a[0] ; i ; --i)
			putchar(a[i] + '0');
		putchar('\n');
	}
	Bignum operator +(Bignum b){
		Bignum c;
		c[0] = max(a[0] , b[0]);
		for(int i = 1 ; i <= c[0] ; ++i)
			if((c[i] += a[i] + b[i]) >= 10){
				c[i] -= 10;
				++c[i + 1];
			}
		if(c[c[0] + 1])
			++c[0];
		return c;
	}
	Bignum operator +=(Bignum b){
		return *this = *this + b;
	}
	Bignum operator -(Bignum b){
		Bignum c;
		c[0] = max(a[0] , b[0]);
		for(int i = 1 ; i <= c[0] ; ++i)
			if((c[i] += a[i] - b[i]) < 0){
				c[i] += 10;
				--c[i + 1];
			}
		while(c[0] && !c[c[0]])
			--c[0];
		return c;
	}
	Bignum operator -=(Bignum b){
		return *this = *this - b;
	}
	Bignum operator *(Bignum b){
		if(!b[0])
			return b;
		Bignum c;
		c[0] = a[0] + b[0] - 1;
		for(int i = 1 ; i <= a[0] ; ++i)
			for(int j = 1 ; j <= b[0] ; ++j)
				c[i + j - 1] += a[i] * b[j];
		for(int i = 1 ; i <= c[0] ; ++i)
			if(c[i] >= 10){
				c[i + 1] += c[i] / 10;
				c[i] %= 10;
				if(i == c[0])
					++c[0];
			}
		while(c[0] && !c[c[0]])
			--c[0];
		return c;
	}
	Bignum operator *=(Bignum b){
		return *this = *this * b;
	}
	Bignum operator ^(int a){
		Bignum times(1) , b(*this);
		while(a){
			if(a & 1)
				times *= b;
			b *= b;
			a >>= 1;
		}
		return times;
	}
	bool operator >(Bignum b)const{
		if(a[0] > b[0])
			return 1;
		if(a[0] < b[0])
			return 0;
		for(int i = a[0] ; i ; --i)
			if(a[i] > b[i])
				return 1;
			else
				if(a[i] < b[i])
					return 0;
		return 0;
	}
	bool operator >= (Bignum b){
		if(a[0] > b[0])
			return 1;
		if(a[0] < b[0])
			return 0;
		for(int i = a[0] ; i ; --i)
			if(a[i] > b[i])
				return 1;
			else
				if(a[i] < b[i])
					return 0;
		return 1;
	}
	Bignum operator /(Bignum b){
		Bignum c , d = *this , e;
		c[0] = a[0] - b[0] + 1;
		for(int i = c[0] ; i ; --i){
			e = b * (Bignum(10) ^ (i - 1));
			for(int j = 1 ; j <= 10 ; ++j)
				if((e * j) > d){
					d -= e * (j - 1);
					c[i] = j - 1;
					break;
				}
		}
		while(c[0] && !c[c[0]])
			--c[0];
		return c;
	}
	Bignum operator /=(Bignum b){
		return *this = *this / b;
	}
	Bignum operator %(Bignum b){
		return *this - *this / b * b;
	}
	Bignum operator %=(Bignum b){
		return *this = *this % b;
	}
}jc[41];
int a , b , c , N;
Bignum ans;

inline int gcd(int a , int b){
	int r = a % b;
	while(r){
		a = b;
		b = r;
		r = a % b;
	}
	return b;
}

inline Bignum calc(int x , int a , int b , int c){
	if(a % x || b % x || c % x || a < 0 || b < 0 || c < 0)
		return 0;
	int N = a + b + c;
	return jc[N / x] / jc[a / x] / jc[b / x] / jc[c / x];
}

int main(){
#ifndef ONLINE_JUDGE
	//freopen("in","r",stdin);
	freopen("out","w",stdout);
#endif
	jc[0] = 1;
	for(int i = 1 ; i <= 40 ; ++i)
		jc[i] = jc[i - 1] * i;
	for(int T = read() ; T ; --T){
		ans = 0;
		a = read();
		b = read();
		c = read();
		N = a + b + c;
		for(int i = 1 ; i <= N ; ++i)
			ans += calc(N / gcd(i , N) , a , b , c);
		if(N & 1)
			ans += (calc(2 , a - 1 , b , c) + calc(2 , a , b - 1 , c) + calc(2 , a , b , c - 1)) * N;
		else
			ans += (calc(2 , a , b , c) + calc(2 , a - 1 , b - 1 , c) + calc(2 , a - 1 , b , c - 1) + calc(2 , a , b - 1 , c - 1)) * N;
		ans = ans / (2 * N);
		ans.output();
	}
	return 0;
}
posted @ 2019-01-31 10:37  cjoier_Itst  阅读(268)  评论(0编辑  收藏  举报