Wannafly挑战赛26-F. msc的棋盘(模型转化+dp)及一类特殊的网络流问题

题目链接

https://www.nowcoder.com/acm/contest/212/F

题解

我们先考虑如果已知了数组 \(\{a_i\}\)\(\{b_i\}\),如何判断其是否合法。

很显然我们可以使用网络流,具体建图如下:从源点 \(s\) 向每一个行对应的结点连边,容量为 \(a_i\);每一个行对应的结点向每一个列对应的结点连边,容量为 \(1\);每一个列对应的结点向汇点 \(t\) 连边,容量为 \(b_i\)。那么 \(\{a_i\}\)\(\{b_i\}\) 是合法的当且仅当最大流等于 \(\sum b_i\)(也等于 \(\sum a_i\))。

而该网络的最大流长什么样呢?如果光从流的角度想不好入手。由于最大流等于最小割,因此我们转化一下,转化为考虑该网络的割。

现在,我们把整幅图的边分成三类,第一类为源点 \(s\) 向每一个行对应的结点连的边,第二类为每一个行对应的结点向每一个列对应的结点连的边,第三类为每一个列对应的结点向汇点 \(t\) 连的边。如果我们已知第一类边有 \(i\) 条被割掉,第三类边有 \(j\) 条被割掉,由于我们只能再割第二类边,因此显然剩下的 \(n - i\) 个行对应的结点与 \(m - j\) 个列对应的结点之间的边必须割掉,因此第二类边的割的贡献值为 \((n - i)(m - j)\)。由于第二类边的贡献是确定的,为了得到最小割,第一类边与第三类边的割的贡献也应尽量小,那么我们直接贪心地选取容量最小的边即可。

我们归纳一下上面的内容:我们将 \(\{a_i\}\)\(\{b_i\}\) 排序,并记排序后 \(\{a_i\}\)\(\{b_i\}\) 的前缀和为 \(sa, sb\),那么对于这样的网络图,最小割值为:\[\min\limits_{0 \leq i \leq n, 0 \leq j \leq m}\{sa_i + sb_j + (n - i)(m - j)\}\]

这样,原问题就得到了转化,我们只需要求有多少个数组 \(\{a_i\}\) 满足 \(\sum a_i = \sum b_i\),且对于任意的 \(i\),都有:\(\forall j, sa_i + sb_j + (n - i)(m - j) \geq sb_m\)

我们可以花 \(O(nm)\) 的时间通过上面的式子预处理得到每一个 \(sa_i\) 的最小值。这之后我们就可以dp了,设 \(f_{i, j, k}\) 表示已经考虑至 \(a_i\),且 \(a_i\) 的值不超过 \(j\),同时 \(sa_i\)\(k\) 的方案数。转移枚举有多少个位置的值为 \(a_i\),乘上对应的组合数即可。注意在转移时要判断状态的合法性,即 \(k\) 必须不小于预处理出的 \(sa_i\) 的最小值。

时间复杂度为 \(O(n^3m^2) = O(n^5)\)

至此,和这道题有关的内容已经结束。不过上面提到的关于一类特殊的网络图的最大流求法引人思考。在这里,我们作简要的说明与归纳。

我们先再来归纳一下该类网络图的简单特征:

  • 我们可以将该网络的所有结点划分为 \(4\) 个互不相交的集合,分别为源点 \(s\)、汇点 \(t\)、点集 \(A\) 与点集 \(B\)。这四个集合包含了该网络的所有结点。
  • 源点 \(s\) 向点集 \(A\) 中的每一个结点有连边,源点 \(s\) 连向点集 \(A\) 中的第 \(i\) 个结点的边的容量为 \(a_i\)
  • 点集 \(B\) 中的每一个结点向汇点 \(t\) 有连边,点集 \(B\) 中的第 \(i\) 个结点连向汇点 \(t\) 的边的容量为 \(b_i\)
  • 点集 \(A\) 中的每一个结点向点集 \(B\) 中的每一个结点有连边,每条边的容量均为 \(1\)
  • 若点集 \(A\) 包含 \(n\) 个结点,点集 \(B\) 包含 \(m\) 个结点,不难发现,整个网络共包含 \(n + m + 2\) 个结点,\(nm + n + m\) 条边。

需要注意的是,上述性质中提到的连边均为单向的。

我们的任务,就是在已知 \(n, m, \{a_i\}, \{b_i\}\) 的情况下,快速求出该网络图从源点 \(s\) 到汇点 \(t\) 的最大流(最小割)。

首先,通过上面给出的最小割值的式子:\(\min\limits_{0 \leq i \leq n, 0 \leq j \leq m}\{sa_i + sb_j + (n - i)(m - j)\}\),我们已经可以排序后在 \(O(nm)\) 的时间内解决该问题。但还有没有更快的呢?答案是有的。

对于一个 \(i\),我们要找到一个 \(j\),使得 \(sa_i + sb_j + (n - i)(m - j)\) 最小。而这个式子显然是可以使用斜率优化的。我们把式子拆开,变为:\(sa_i +sb_j + nm - im - jn + ij\)。当 \(i\) 确定时,\(sa_i, nm, im\) 显然都是定值,因此,我们希望找到一个 \(j\),使得 \(sb_j - jn + ij\) 最小。

\(f_i = sb_j - jn + ij\),那么有 \(-ij + f_i = sb_j - jn\),那么这显然是一个斜率为 \(-i\) 的一次函数,经过的点为 \((j, sb_j - jn)\)。由于从小到大依次枚举 \(i\) 时,斜率 \(-i\) 是单调的,因此我们可以先花 \(O(m)\) 的时间用所有的 \(j\) 构建出凸包之后,在 \(O(n)\) 的时间内使用单调栈(由于这里插入和弹出操作是分开的,因此可以不用单调队列)求出每一个 \(f_i\) 的最小值。这样,我们就可以排序后在 \(O(n + m)\) 的时间内解决该问题。

不过我的方法好像稍微有点复杂,虽然代码还是很好写......

代码

Wannafly挑战赛26-F. msc的棋盘 代码如下:

#include<bits/stdc++.h>
 
using namespace std;
 
template<typename T> inline bool checkMin(T& a, const T& b) {
  return a > b ? a = b, true : false;
}
 
const int N = 55 + 10, mod = 1e9 + 7;
 
inline void add(int& x, int y) {
  x += y;
  if (x >= mod) {
    x -= mod;
  }
}
 
int n, m, a[N], b[N], f[N][N][N * N], binom[N][N], s[N][N][N * N];
 
void init(int n) {
  binom[0][0] = 1;
  for (register int i = 1; i <= n; ++i) {
    for (register int j = 0; j <= i; ++j) {
      binom[i][j] = (binom[i - 1][j] + (!j ? 0 : binom[i - 1][j - 1])) % mod;
    }
  }
}
 
int main() {
  scanf("%d%d", &n, &m);
  init(n);
  for (register int i = 1; i <= m; ++i) {
    scanf("%d", &b[i]);
  }
  sort(b + 1, b + 1 + m);
  for (register int i = 1; i <= m; ++i) {
    b[i] += b[i - 1];
  }
  for (register int i = 1; i <= n; ++i) {
    int minres = n * m + 1;
    for (register int j = 0; j <= m; ++j) {
      checkMin(minres, b[j] + (n - i) * (m - j));
    }
    a[i] = b[m] - minres;
  }
  for (register int i = 0; i <= n; ++i) {
    s[i][0][0] = f[i][0][0] = !a[i] ? binom[n][i] : 0;
    for (register int j = 1; j <= m; ++j) {
      s[i][j][0] = (s[i][j - 1][0] + f[i][j][0]) % mod;
    }
  }
  for (register int i = 1; i <= n; ++i) {
    for (register int j = 1; j <= m; ++j) {
      for (register int k = a[i]; k <= b[m]; ++k) {
        for (register int a = 0; a < i; ++a) {
          if (k - j * (i - a) >= 0) {
            add(f[i][j][k], 1ll * s[a][j - 1][k - j * (i - a)] * binom[n - a][i - a] % mod);
          }
        }
      }
    }
    for (register int j = 1; j <= m; ++j) {
      for (register int k = a[i]; k <= b[m]; ++k) {
        s[i][j][k] = (s[i][j - 1][k] + f[i][j][k]) % mod;
      }
    }
  }
  printf("%d\n", s[n][m][b[m]]);
  return 0;
}

上面提到的一类特殊的网络流问题的代码如下(代码中,输入依次为 \(n, m, \{a_i\}, \{b_i\}\),输出为最大流的流量值):

#include<bits/stdc++.h>

using namespace std;

typedef long long ll;

template<typename T> inline bool checkMin(T& a, const T& b) {
  return a > b ? a = b, true : false;
}

const int N = 1e6 + 10;

int n, m, q[N], t;
ll a[N], b[N];

// (i, b[i] - ni)
inline ll x_val(int i) {
  return i;
}

inline ll y_val(int i) {
  return b[i] - 1ll * n * i;
}

inline double slope(int i, int j) {
  return 1.0 * (y_val(j) - y_val(i)) / (x_val(j) - x_val(i));
}

int main() {
  scanf("%d%d", &n, &m);
  for (register int i = 1; i <= n; ++i) {
    scanf("%lld", &a[i]);
  }
  for (register int i = 1; i <= m; ++i) {
    scanf("%lld", &b[i]);
  }
  sort(a + 1, a + 1 + n);
  sort(b + 1, b + 1 + m);
  for (register int i = 1; i <= n; ++i) {
    a[i] += a[i - 1];
  }
  for (register int i = 1; i <= m; ++i) {
    b[i] += b[i - 1];
  }
  q[0] = 0;
  for (register int i = 0; i <= m; ++i) {
    for (; t > 0 && slope(q[t - 1], q[t]) >= slope(q[t - 1], i); --t);
    q[++t] = i;
  }
  ll ans = 1e18;
  for (register int i = 0; i <= n; ++i) {
    for (; t && slope(q[t - 1], q[t]) >= -i; --t);
    int j = q[t];
    checkMin(ans, a[i] + b[j] + 1ll * (n - i) * (m - j));
  }
  printf("%lld\n", ans);
  return 0;
}
posted @ 2018-10-23 14:02  ImagineC  阅读(...)  评论(... 编辑 收藏