单位根反演
公式
\[[n\mid k]=\frac 1n\sum_{i=0}^{n-1} \omega_n^{ik}
\]
证明
\(n\mid k\) 时,\(\forall i\in \mathbb N\),\(\omega_n^{ik}=1\),因此 \(\frac 1n\sum_{i=0}^{n-1} \omega_n^{ik}=\frac 1n\cdot n=1\)
\(n\nmid k\) 时,\(\omega_n^{ik}\) 取遍 \(\omega_n^{i\gcd(n,k)}(0\le i<\frac n{\gcd(n,k)})\) 各 \(\gcd(n,k)\) 次,总和为 \(0\)
应用
\[\begin{aligned}
&\sum_{i\ge 0}[x^{ni}]f(x)\\
=&\sum_{k\ge 0}[x^k]f(x)\cdot[n\mid k]\\
=&\sum_{k\ge 0}[x^k]f(x)\frac 1n\sum_{i=0}^{n-1} \omega_n^{ik}\\
=&\frac 1n\sum_{i=0}^{n-1}\sum_{k\ge 0}[x^k]f(x)(\omega_n^i)^k\\
=&\frac 1n\sum_{i=0}^{n-1}f(\omega_n^i)\\
\end{aligned}
\]
\[\begin{aligned}
&\sum_{i\ge 0}[x^{ni+d}]f(x)\\
=&\sum_{k\ge 0}[x^k]f(x)\cdot[n\mid (k-d)]\\
=&\sum_{k\ge 0}[x^k]f(x)\frac 1n\sum_{i=0}^{n-1} \omega_n^{i(k-d)}\\
=&\frac 1n\sum_{i=0}^{n-1}\sum_{k\ge 0}[x^k]f(x)(\omega_n^i)^{(k-d)}\\
=&\frac 1n\sum_{i=0}^{n-1}\sum_{k\ge 0}[x^k]f(x)(\omega_n^i)^k\omega_n^{-id}\\
=&\frac 1n\sum_{i=0}^{n-1}\omega_n^{-id}f(\omega_n^i)\\
\end{aligned}
\]

浙公网安备 33010602011771号