七则运算微分公式的推导
以下 \(c\) 为常数,\(x\) 为参数,\(e\) 为自然常数
部分表述不一定严谨
加法法则
\[(f(x)+g(x))^{'}=f^{'}(x)+g^{'}(x)
\]
乘法法则
\[\begin{aligned}
(f(x)g(x))^{'}=&\frac{f(x+\mathrm dx)g(x+\mathrm dx)-f(x)g(x)}{\mathrm dx}\\
=&\frac{(f(x)+f^{'}(x)\mathrm dx)(g(x)+g^{'}(x)\mathrm dx)-f(x)g(x)}{\mathrm dx}\\
=&\frac{f(x)g(x)+g(x)f^{'}(x)\mathrm dx+f(x)g^{'}(x)\mathrm dx+f^{'}(x)g^{'}(x)(\mathrm dx)^2-f(x)g(x)}{\mathrm dx}\\
=&\frac{g(x)f^{'}(x)\mathrm dx+f(x)g^{'}(x)\mathrm dx}{\mathrm dx}\\
=&g(x)f^{'}(x)+f(x)g^{'}(x)\\
\end{aligned}\]
链式法则
\[\begin{aligned}
(f(g(x)))^{'}=&\frac{f(g(x+\mathrm dx))-f(g(x))}{\mathrm dx}\\
=&\frac{f(g(x)+g^{'}(x)\mathrm dx)-f(g(x))}{\mathrm dx}\\
=&\frac{f(g(x))+f^{'}(g(x))g^{'}(x)\mathrm dx-f(g(x))}{\mathrm dx}\\
=&\frac{f^{'}(g(x))g^{'}(x)\mathrm dx}{\mathrm dx}\\
=&f^{'}(g(x))g^{'}(x)\\
\end{aligned}\]
指数函数求导
\(e\) 的一种定义:令 \(f(x)=a^x\),\(e\) 为使 \(f'(0)=1\) 的常数 \(a\)
\[\begin{aligned}
\exp^{'}(x)=&\frac{\exp(x+\mathrm dx)-\exp(x)}{\mathrm dx}\\
=&\exp(x)\cdot\frac{\exp(\mathrm dx)-1}{\mathrm dx}\\
=&\exp(x)\cdot(\exp^{'}(x)[0])\\
=&\exp(x)\\
\\
(\exp(f(x)))^{'}=&\exp^{'}(f(x))f^{'}(x)\\
=&\exp(f(x))f^{'}(x)\\
\\
\left(c^{x}\right)^{'}=&\exp^{'}(x\ln c)\\
=&\exp(x\ln c)(x\ln c)^{'}\\
=&\exp(x\ln c)\ln c\\
=&c^x\ln c\\
\end{aligned}\]
自然对数求导
\[\begin{aligned}
e^{\ln x}&=x\\
(e^{\ln x})^{'}&=1\\
(e^{\ln x})\ln^{'}x&=1\\
x\ln^{'}x&=1\\
\ln^{'}x&=\frac1x\\
\end{aligned}\]
\[\begin{aligned}
(\ln f(x))^{'}=&\ln^{'}f(x)f^{'}(x)\\
=&\frac1{f(x)}f^{'}(x)\\
=&\frac{f^{'}(x)}{f(x)}\\
\end{aligned}\]
幂次法则
\[\begin{aligned}
\left(f(x)^{g(x)}\right)^{'}=&\left(\exp(\ln f(x)g(x))\right)^{'}\\
=&\exp(\ln f(x)g(x))(\ln f(x)g(x))^{'}\\
=&f(x)^{g(x)}(\ln f(x)g(x))^{'}\\
=&f(x)^{g(x)}\left(\ln f(x)g^{'}(x)+(\ln f(x))^{'}g(x)\right)\\
=&f(x)^{g(x)}\left(\ln f(x)g^{'}(x)+(\ln f(x))^{'}g(x)\right)\\
=&f(x)^{g(x)}\left(\ln f(x)g^{'}(x)+\frac{f^{'}(x)g(x)}{f(x)}\right)\\
\end{aligned}\]
乘方法则
\[\begin{aligned}
(f^c(x))^{'}=&(\exp(c\ln f(x)))^{'}\\
=&\exp(c\ln f(x))(c\ln f(x))^{'}\\
=&cf^c(x)(\ln f(x))^{'}\\
=&cf^c(x)\frac{f^{'}(x)}{f(x)}\\
=&cf^{'}(x)f^{c-1}(x)\\
\end{aligned}\]
一般对数求导
\[\begin{aligned}
(\log_a(x))^{'}=&\left(\frac{\ln x}{\ln a}\right)^{'}\\
=&\frac{\ln^{'}x}{\ln a}\\
=&\frac1{x\ln a}\\
(\log_x(a))^{'}=&\left(\frac{\ln a}{\ln x}\right)^{'}\\
=&\ln a({\ln^{-1} x})^{'}\\
=&\ln a\cdot(-1)(\ln^{'} x)({\ln^{-2} x})\\
=&-\ln a\cdot\frac1x({\ln^{-2} x})\\
=&-\frac{\ln a}{x\ln^2x}\\
\end{aligned}\]
除法法则
\[\begin{aligned}
\left(\frac{f(x)}{g(x)}\right)^{'}=&\left(f(x)\cdot g^{-1}(x)\right)^{'}\\
=&f^{'}(x)\cdot g^{-1}(x)+f(x)\cdot\left(g^{-1}(x)\right)^{'}\\
=&f^{'}(x)\cdot g^{-1}(x)+f(x)\cdot(-1)g^{'}(x)g^{-2}(x)\\
=&f^{'}(x)\cdot g^{-1}(x)-f(x)\cdot g^{'}(x)g^{-2}(x)\\
=&\frac{f^{'}(x)\cdot g(x)-f(x)\cdot g^{'}(x)}{g^2(x)}\\
\end{aligned}\]
参考
【官方双语】微积分的本质 01-05

浙公网安备 33010602011771号