leetcode 18 4Sum
题目连接
https://leetcode.com/problems/4sum/
4Sum
Description
Given an array $S$ of n integers, are there elements $a, b, c,$ and d in $S$ such that $a + b + c + d = target?$ Find all unique quadruplets in the array which gives the sum of target.
**Note**: The solution set must not contain duplicate quadruplets.
For example, given array $S = [1, 0, -1, 0, -2, 2]$, and $target = 0$.
A solution set is:
[
[-1, 0, 0, 1],
[-2, -1, 1, 2],
[-2, 0, 0, 2]
]
二分查找,先预先枚举出$a + b$所得的$n^2$个数字并排好序。
然后判断是否有$a+b=target-c-d$(二分查找即可)
PS:注意所求的四个数下标各不相同,枚举的时候要加以判断
PPS:所得结果可能需要去重。
class Solution {
using vec = vector<int>;
using mat = vector<vec>;
using pii = pair<int, pair<int, int>>;
public:
mat fourSum(vec& nums, int target) {
mat res;
int n = 0;
if(!(n = nums.size()) || n < 4) return res;
vector<pii> vpi;
for(int i = 0; i < n; i++) {
for(int j = i + 1; j < n; j++) {
vpi.push_back({ nums[i] + nums[j], { i, j } });
}
}
sort(vpi.begin(), vpi.end(), [](pii &a, pii &b)->bool {
return a.first < b.first;
});
int size = vpi.size();
for(int i = 0; i < n; i++) {
for(int j = i + 1; j < n; j++) {
int lb = 0, ub = size - 1;
int k = target - nums[i] - nums[j];
while(lb <= ub) {
int m = (lb + ub) >> 1;
if(vpi[m].first >= k) ub = m - 1;
else lb = m + 1;
}
while(lb < size && vpi[lb].first == k) {
auto &r = vpi[lb++].second;
if(r.first == i || r.first == j || r.second == i || r.second == j) continue;
int a = nums[i], b = nums[j], c = nums[r.first], d = nums[r.second];
if(a + b + c + d != target) continue;
if (a > b) swap(a, b);
if (c > d) swap(c, d);
if (a > c) swap(a, c);
if (b > d) swap(b, d);
if (b > c) swap(b, c);
res.push_back({ a, b, c, d });
}
}
}
sort(res.begin(), res.end());
res.erase(unique(res.begin(), res.end()), res.end());
return res;
}
};
By: GadyPu 博客地址:http://www.cnblogs.com/GadyPu/ 转载请说明

浙公网安备 33010602011771号