[网络流24题] P2762 太空飞行计划
最大权闭合子图,需要方案
https://www.luogu.com.cn/problem/P2762
没啥好说的,裸的最大权闭合子图。
需要注意的是最后是否连通可以用 dep[v]判断
点击查看代码
#include <bits/stdc++.h>
#define endl '\n'
#define IOS \
ios::sync_with_stdio(0); \
cin.tie(0); \
cout.tie(0)
#define P pair<int, int>
typedef long long ll;
using namespace std;
const int N = 100 + 5;
const int M = N * N + 5;
const int INF = 0x3f3f3f3f;
struct edge {
int v, w, to;
} e[M * 2];
int pre[N], cnt_edge, dep[N];
int S, T, z, head[N], sum;
int n, m, q[N], cur[N];
void add(int u, int v, int w) {
e[cnt_edge] = {v, w, head[u]};
head[u] = cnt_edge++;
e[cnt_edge] = {u, 0, head[v]};
head[v] = cnt_edge++;
}
bool bfs() {
for (int i = 0; i <= T; i++) dep[i] = 0;
dep[S] = 1;
int l = 0, r = 1;
q[r] = S;
while (l < r) {
int u = q[++l];
for (int i = head[u]; i != -1; i = e[i].to) {
int v = e[i].v;
if (!dep[v] && e[i].w) dep[v] = dep[u] + 1, q[++r] = v;
}
}
return dep[T];
}
int dfs(int u, int mi) {
int res = 0;
if (mi == 0 || u == T) return mi;
for (int &i = cur[u]; i != -1; i = e[i].to) {
int v = e[i].v;
if (dep[u] + 1 == dep[v] && e[i].w) {
int minn = dfs(v, min(mi - res, e[i].w));
e[i].w -= minn;
e[i ^ 1].w += minn;
res += minn;
if (res == mi) return res;
}
}
if (res == 0) dep[u] = 0;
return res;
}
int dinic() {
ll res = 0;
while (bfs()) {
memcpy(cur, head, sizeof(head));
// cout<<res<<endl;
res += dfs(S, INF);
}
return res;
}
int id(int x, int on) { return on * n + x; }
int vals[105];
int main() {
int m;
cin >> n >> m;
memset(head, -1, sizeof head);
S = n + m + 1, T = S + 1;
int val;
ll sum = 0;
for (int i = 1; i <= n; i++) {
cin >> val;
val = val > 0 ? val : -val;
vals[i] = val;
sum += val;
add(S, id(i, 0), val);
char tools[10000];
memset(tools, 0, sizeof tools);
cin.getline(tools, 10000);
int ulen = 0, tool;
while (sscanf(tools + ulen, "%d", &tool) == 1)
//之前已经用scanf读完了赞助商同意支付该实验的费用
{ // tool是该实验所需仪器的其中一个
//这一行,你可以将读进来的编号进行储存、处理,如连边。
// cout << "add: " << i << " " << tool << endl;
add(id(i, 0), id(tool, 1), INF);
if (tool == 0)
ulen++;
else {
while (tool) {
tool /= 10;
ulen++;
}
}
ulen++;
}
}
for (int i = 1; i <= m; i++) {
cin >> val;
val = val > 0 ? val : -val;
vals[i + n] = val;
add(id(i, 1), T, val);
}
int ans = sum - dinic();
// puts("-----------");
for (int i = 1; i <= n; i++) {
if (dep[i]) cout << i << " ";
}
cout << endl;
for (int i = 1; i <= m; i++) {
if (dep[i + n]) cout << i << " ";
}
cout << endl;
cout << ans << endl;
return 0;
}
放一下我最大权闭合子图的笔记
• 有一个有向图,每一个点都有一个权值(可以为正或负或0),选择一个权值和最大的子图,使得每个点的后继都在子图里面,这个子图就叫最大权闭合子图。
• 解决方法:
• 从源点s向每个正权点连一条容量为权值的边,每个负权点向汇点t连一条容量为权值的绝对值的边,原边容量全部为无限大。
• 求它的最小割,割掉后,与源点s连通的点构成最大权闭合子图,权值为正权值之和-最小割。
PS 用 \(Dinic\) 来写,是否与源点s连通可以用分层时的 \(dep\) 判断,其他写法可以用 \(dist\) 等
for (int i = 1; i <= n; i++) {
if (dep[i]) cout << i << " ";//连通则输出
}
如:https://nanti.jisuanke.com/t/41096
点击查看代码
#include<iostream>
#include <cstring>
#include <cmath>
#include <map>
#include <vector>
#include <algorithm>
#define int ll
using namespace std;
typedef long long ll;
const int M = 4000 + 5;
const int N = 8e2 + 5;
const int INF = 0x3f3f3f3f;
int n1,n2,tot;
struct node
{
int v,w,to;
} edge[M*2];
int pre[N],cnt,dep[N];
int S,T,z,head[N],sum,id;
int n,m,q[N],cur[N];
void add(int u,int v,int w)
{
edge[cnt]= {v,w,head[u]};
head[u]=cnt++;
edge[cnt]= {u,0,head[v]};
head[v]=cnt++;
}
bool bfs()
{
for(int i=0; i<=T; i++)
dep[i]=0;
dep[S]=1;
int l=0,r=1;
q[r]=S;
while(l<r)
{
int u=q[++l];
for(int i=head[u]; i!=-1; i=edge[i].to)
{
int v=edge[i].v;
if(!dep[v]&&edge[i].w)
dep[v]=dep[u]+1,q[++r]=v;
}
}
return dep[T];
}
int dfs(int u,int mi)
{
int res=0;
if(mi==0||u==T)
return mi;
for(int &i=cur[u]; i!=-1; i=edge[i].to)
{
int v=edge[i].v;
if(dep[u]+1==dep[v]&&edge[i].w)
{
int minn=dfs(v,min(mi-res,edge[i].w));
edge[i].w-=minn;
edge[i^1].w+=minn;
res+=minn;
if(res==mi)
return res;
}
}
if(res==0) dep[u]=0;
return res;
}
int dinic()
{
ll res=0;
while(bfs())
{
memcpy(cur,head,sizeof(head));
// cout<<res<<endl;
res+=dfs(S,INF);
}
return res;
}
signed main(){
int t;cin >> t;
while(t--){
cin >> n1 >> n2;
S = 0;T = n1 + n2 + 1;cnt= 0;
ll totp = 0;
for(int i = 0; i <= n1 + n2 + 1; i++) head[i] = -1;
for(int i = 1; i <= n1; i++){
int w;cin >> w;
totp += w;
add(S,i,w);
}
for(int i = 1; i <= n2; i++){
int w;cin >> w;
add(i+n1,T,w);
}
int m1,m2,v;
for(int u = 1; u <= n1; u++){
cin >> m1 >> m2;
for(int i = 0; i < m1; i++){
cin >> v;
add(u,v+n1,INF);
}
for(int i = 0; i < m2; i++){
cin >> v;
add(u,v,INF);
}
}
int ans = dinic();
cout<<totp - ans<<endl;
}
}

浙公网安备 33010602011771号