[网络流24题]P1251 餐巾计划
最大流好题!构造,思维
https://www.luogu.com.cn/problem/P1251
这个建模真的是很好的构造,凹了半天
Tutorial
不难想到把点拆成早上:输出干净毛巾,晚上:输出脏毛巾
一开始有一个很符合直觉的想法,大概建成这个样子

不难发现这样有一个问题,这样每条毛巾的最短路长度都是直接购买,这显然是没有限制住题目条件。然后不妨考虑考虑让只有第一个点买毛巾,反正是要让一些点不需要走那条长度为pnew的路,期间画出了这样的东西orz

然后想到,既然每个晚上会自然得到当天用过的 \(a[i]\) 个脏毛巾,那么不妨直接让 \(S\) 连晚上的点,这样距离就是 \(0\) 了。晚上的脏毛巾来源有 白天用的(\(S\)连过来),前面的白天用了没洗的,去向可以不洗去下一天晚上,或者花费 \(pfast/pslow\) 送到相应的白天的点。
对于白天的点,\(a[i]\) 连汇点表示每天开始要有足够的干净毛巾,最大流保证一定流满。来源有买的(从源点买),洗的
综上所以只需要连下面6种边
addflow(S, id(i, 0), inf, pnew);//买毛巾
addflow(S, id(i, 1), a[i], 0);//当天产生的脏毛巾
addflow(id(i, 0), T, a[i], 0);//当天使用的干净毛巾
if (i + dfast <= n) addflow(id(i, 1), id(i + dfast, 0), inf, pfast);//快洗
if (i + dslow <= n) addflow(id(i, 1), id(i + dslow, 0), inf, pslow);//慢洗
if (i < n) {
addflow(id(i, 1), id(i + 1, 1), inf, 0);//不洗,堆到下一天处理
}

此处有一细节,因为毛巾可以堆着不洗,所以所有洗衣服,堆衣服的边容量都应该为 \(INF\),不能忽略前面点的影响
点击查看代码
#include <bits/stdc++.h>
#define endl '\n'
#define IOS \
ios::sync_with_stdio(0); \
cin.tie(0); \
cout.tie(0)
#define P pair<int, int>
typedef long long ll;
using namespace std;
const int maxn = 2 * 2000 + 5;
const ll inf = 1e18;
const int INF = 0x3f3f3f3f;
int n, cnt_edge = 1, S, T;
int a1[maxn], a2[maxn], head[maxn];
ll dis[maxn];
bool vis[maxn];
struct edge {
int to, nxt;
ll flow, cost;
} e[(maxn * maxn) << 2];
inline void add(int u, int v, ll w, ll c) {
e[++cnt_edge].nxt = head[u];
head[u] = cnt_edge;
e[cnt_edge].to = v;
e[cnt_edge].flow = w;
e[cnt_edge].cost = c;
}
/*u,v,flow,cost*/
inline void addflow(int u, int v, ll w, ll c) {
add(u, v, w, c);
add(v, u, 0, -c);
}
inline bool spfa(int on) {
memset(vis, 0, sizeof(vis));
if (on == 1)
for (int i = 0; i <= T; i++) dis[i] = inf;
else
for (int i = 0; i <= T; i++) dis[i] = -inf;
queue<int> q;
q.push(S);
dis[S] = 0;
vis[S] = 1;
while (!q.empty()) {
int x = q.front();
q.pop();
vis[x] = 0;
for (int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
// cout << "->" << y << endl;
if ((on == 1 && e[i].flow && dis[y] > dis[x] + e[i].cost) ||
(on == -1 && e[i].flow && dis[y] < dis[x] + e[i].cost)) {
dis[y] = dis[x] + e[i].cost;
if (!vis[y]) q.push(y), vis[y] = 1;
}
}
}
// cout << dis[T] << endl;
if (on == 1)
return dis[T] != inf;
else
return dis[T] != -inf;
}
ll dfs(int x, ll lim) {
vis[x] = 1;
if (x == T || lim <= 0) return lim;
ll res = lim;
for (int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
if (dis[y] != dis[x] + e[i].cost || e[i].flow <= 0 || vis[y]) continue;
ll tmp = dfs(y, min(res, e[i].flow));
res -= tmp;
e[i].flow -= tmp;
e[i ^ 1].flow += tmp;
if (res <= 0) break;
}
return lim - res;
}
/*on == 1时为最小费用,on == -1为最大费用*/
inline ll Dinic(int on) {
ll res = 0, cost = 0;
while (spfa(on)) {
ll flow = dfs(S, inf);
res += flow, cost += flow * dis[T];
}
return cost;
}
int id(int x, int on) { return n * on + x; }
int a[maxn], pnew, pfast, dfast, pslow, dslow;
int main() {
cin >> n;
S = n + n + 1, T = S + 1;
for (int i = 1; i <= n; i++) cin >> a[i];
cin >> pnew >> dfast >> pfast >> dslow >> pslow;
for (int i = 1; i <= n; i++) {
addflow(S, id(i, 0), inf, pnew);
addflow(S, id(i, 1), a[i], 0);
addflow(id(i, 0), T, a[i], 0);
if (i + dfast <= n) addflow(id(i, 1), id(i + dfast, 0), inf, pfast);
if (i + dslow <= n) addflow(id(i, 1), id(i + dslow, 0), inf, pslow);
if (i < n) {
addflow(id(i, 1), id(i + 1, 1), inf, 0);
}
}
cout << Dinic(1) << endl;
return 0;
}

浙公网安备 33010602011771号