【高联二试】平面几何
这个平面几何不是你学的那个平面几何(笑)
全等与相似
托勒密定理
在圆内接四边形\(ABCD\) 中,\(|AC|~|BD|=|AB|~|CD|+|AD|~|BC|\)。
几何法证明:取点 \(E\in AC\) ,使得 \(\angle 1=\angle 2\).
\(\because \angle 3,\angle 4\) 是 \(\overset{\frown}{BC}\) 所对的圆周角
\(\therefore \angle 3=\angle 4\)
\(\because \angle1=\angle 2,\angle3=\angle 4\)
\(\therefore \triangle ABE \sim \triangle DBC\)
\(\therefore \frac{AB}{BD}=\frac{AE}{CD},AB·CD=BD·AE~①\)
\(\because \angle BCE,\angle BDA\) 是 \(\overset{\frown}{AB}\) 所对的圆周角
\(\therefore \angle BCE=\angle BDA\)
\(\because \angle2=\angle 1\)
\(\therefore \angle2+\angle DBE=\angle1+\angle DBE\)
即 \(\angle CBE=\angle DBA\)
\(\because \angle CBE=\angle DBA,\angle BCE=\angle BDA\)
\(\therefore \triangle CBE \sim \triangle DBA\)
\(\therefore \frac{CE}{AD}=\frac{BC}{BD},BC·AD=CE·BD~②\)
\(①+②\) 得 \(AB·CD+AD·BC=(AE+CE)·BD=AC·BD\)
托勒密不等式:凸四边形的两组对边乘积和不小于其对角线的乘积,为托勒密不等式的推广。
证明和托勒密定理差不多,但做辅助线要保证 \(\angle 3=\angle 4\),因此 \(E\) 不一定在 \(AC\) 上,\(AE+CE\ge AC\) ,所以 \(AB·CD+AD·BC=(AE+CE)·BD\ge AC·BD\),取等条件即为 \(A,B,C,D\) 四点共圆。