内存对齐的讲解
来源自:http://www.cppblog.com/snailcong/archive/2009/03/16/76705.html
程序说明一切:
//环境:vc6 + windows sp2
//程序1
#include <iostream>
using namespace std;
struct st1
{
char a ;
int b ;
short c ;
};
struct st2
{
short c ;
char a ;
int b ;
};
int main()
{
cout<<"sizeof(st1) is "<<sizeof(st1)<<endl;
cout<<"sizeof(st2) is "<<sizeof(st2)<<endl;
return 0 ;
}
程序的输出结果为:
sizeof(st1) is 12
sizeof(st2) is 8
程序1中结构体按常理来理解sizeof(st1)和sizeof(st2)结果都应该是7,4(int) + 2(short) + 1(char) = 7 。经过内存对齐后,结构体的空间反而增大了。
在解释内存对齐的作用前,先来看下内存对齐的规则:
1、 对于结构的各个成员,第一个成员位于偏移为0的位置,以后每个数据成员的偏移量必须是min(#pragma pack()指定的数,这个数据成员的自身长度) 的倍数。
2、 在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照#pragma pack指定的数值和结构(或联合)最大数据成员长度中,比较小的那个进行。
内存对齐的主要作用是:
1、 平台原因(移植原因):不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
2、 性能原因:经过内存对齐后,CPU的内存访问速度大大提升。具体原因稍后解释。
图一:
这是普通程序员心目中的内存印象,由一个个的字节组成,而CPU并不是这么看待的。
图二:

CPU把内存当成是一块一块的,块的大小可以是2,4,8,16字节大小,因此CPU在读取内存时是一块一块进行读取的。块大小成为memory access granularity(粒度) 本人把它翻译为“内存读取粒度” 。
假设CPU要读取一个int型4字节大小的数据到寄存器中,分两种情况讨论:
1、数据从0字节开始
2、数据从1字节开始
再次假设内存读取粒度为4。
图三:

当该数据是从0字节开始时,很CPU只需读取内存一次即可把这4字节的数据完全读取到寄存器中。
当该数据是从1字节开始时,问题变的有些复杂,此时该int型数据不是位于内存读取边界上,这就是一类内存未对齐的数据。
图四:

此时CPU先访问一次内存,读取0—3字节的数据进寄存器,并再次读取4—5字节的数据进寄存器,接着把0字节和6,7,8字节的数据剔除,最后合并1,2,3,4字节的数据进寄存器。对一个内存未对齐的数据进行了这么多额外的操作,大大降低了CPU性能。
这还属于乐观情况了,上文提到内存对齐的作用之一为平台的移植原因,因为以上操作只有有部分CPU肯干,其他一部分CPU遇到未对齐边界就直接罢工了。
图片来自:Data alignment: Straighten up and fly right
如大家对内存对齐对性能的具体影响情况,可以参考上文。
#pragma pack(n) 表示设置为n字节对齐。 VC6默认8字节对齐
浙公网安备 33010602011771号