• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
neverlandly
博客园    首页    新随笔    联系   管理    订阅  订阅

Leetcode: Minimum Domino Rotations For Equal Row

In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino.  (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.)

We may rotate the i-th domino, so that A[i] and B[i] swap values.

Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same.

If it cannot be done, return -1.

 

Example 1:

Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2]
Output: 2
Explanation: 
The first figure represents the dominoes as given by A and B: before we do any rotations.
If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure.
Example 2:

Input: A = [3,5,1,2,3], B = [3,6,3,3,4]
Output: -1
Explanation: 
In this case, it is not possible to rotate the dominoes to make one row of values equal.
 

Note:

1 <= A[i], B[i] <= 6
2 <= A.length == B.length <= 20000

 

1. The final uniform character should be either A[0] or B[0]

2. A[0] could be at the top, or the bottom. Same applies to B[0]

3. If A[0] works, no need to check B[0]; Because if both A[0] and B[0] exist in all dominoes, the result should be the same.

 1 class Solution {
 2     public int minDominoRotations(int[] A, int[] B) {
 3         if (A.length < 1 || B.length < 1 || A.length != B.length) return -1;
 4         int n = A.length;
 5         for (int i = 0, a = 0, b = 0; i < n && (A[0] == A[i] || A[0] == B[i]); i ++) {
 6             if (A[i] != A[0]) a ++;   // a stands for try to put A[0] at top
 7             if (B[i] != A[0]) b ++;   // b stands for try to put A[0] at bottom
 8             if (i == n - 1) return Math.min(a, b);
 9         }
10         
11         for (int i = 0, a = 0, b = 0; i < n && (B[0] == A[i] || B[0] == B[i]); i ++) {
12             if (A[i] != B[0]) a ++;
13             if (B[i] != B[0]) b ++;
14             if (i == n - 1) return Math.min(a, b);
15         }
16         return -1;
17     }
18 }

 

posted @ 2019-10-01 13:27  neverlandly  阅读(476)  评论(0)    收藏  举报
刷新页面返回顶部
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3