CF1025B Weakened Common Divisor 题解
Content
定义 \(n\) 个数对 \((a_1,b_1),(a_2,b_2),(a_3,b_3),...,(a_n,b_n)\) 的 \(\text{WCD}\) 为能够整除每个数对中至少一个数的 \(>1\) 的整数。现在,给出 \(n\) 个数对,请找出它们的 \(\text{WCD}\),或者这 \(n\) 个数对没有符合要求的 \(\text{WCD}\)。
数据范围:\(1\leqslant n\leqslant 1.5\times 10^5,2\leqslant a_i,b_i\leqslant 2\times 10^9\)。
Solution
我们先把第一个数对的质因子分解出来,然后再在后面找是否有不能够满足条件的质因子,有的话就删除,否则就保留着。最后看是否还有剩下的质因子即可。
Code
int n, pr[150007];
int main() {
n = Rint;
F(i, 1, n) {
int x = Rint, y = Rint;
if(i == 1) {
F(j, 2, sqrt(x)) if(!(x % j)) {pr[++pr[0]] = j; while(!(x % j)) x /= j;}
if(x != 1) pr[++pr[0]] = x;
F(j, 2, sqrt(y)) if(!(y % j)) {pr[++pr[0]] = j; while(!(y % j)) y /= j;}
if(y != 1) pr[++pr[0]] = y;
} else F(j, 1, pr[0]) if(!pr[j]) continue; else if(x % pr[j] && y % pr[j]) pr[j] = 0;
}
F(i, 1, pr[0]) if(pr[i]) return printf("%d", pr[i]), 0;
printf("-1");
return 0;
}