几乎处处收敛和依测度收敛
几乎处处收敛和依测度收敛
几乎处处成立
\[\begin{aligned}
\text{ a.e. }
&\iff
\text{almost everywhere}
\iff
\text{几乎处处}\\
\text{ a.s. }
&\iff
\text{almost surely}
\iff
\text{几乎必然}\\
f \text{ a.e. 有限}
&\iff
\{f=\pm\infty\} \text{ 是零测集 }\\
f \text{ a.e. 有界}
&\iff
\exists M>0, \text{ s.t. } \{|f|>M\} \text{ 是零测集 }\\
f \text{ a.e. 可测}
&\iff
\exists h\in\mathcal{\overline{L}}, \text{ s.t. } f = h \text{ a.e. }\\
f = g \text{ a.e. }
&\iff
\{f\neq g\} \text{ 是零测集 }\\
f\geq g \text{ a.e. }
&\iff
\{f < g\} \text{ 是零测集 }\\
\end{aligned}
\]
几乎处处收敛到几乎必然收敛
\[设
\{f_n,f,n\geq 1\}
\text{ 是 a.e. 有限的广义实值可测函数列}
\]
\[\begin{aligned}
f_n \to f \text{ a.e. }
&\iff
\exists \text{ 零测集 } N,
\forall \omega\in N^c,
\text{ s.t. }
f_n(\omega)\to f(\omega)\\
&\iff
\forall \varepsilon>0,
\mu\left( \bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}\{|f_k-f|\geq \varepsilon\} \right) = 0\\
&\iff
\forall \varepsilon>0,
\lim_{n\to\infty}
\mu\left( \bigcup_{k=n}^{\infty}\{|f_k-f|\geq \varepsilon\} \right) = 0\\
&\iff
\forall \varepsilon>0,
\lim_{n\to\infty}
\mu\left( \sup_{k\geq n}\{|f_k-f|\geq \varepsilon\} \right) = 0\\
\\
\text{R.V. } X_n\to X
\text{ a.s. }
&\iff
\forall \varepsilon>0,
P\left(|X_n-X|\geq \varepsilon,\text{ i.o.}\right) = 0
\end{aligned}
\]
依测度收敛到依概率收敛
\[\begin{aligned}
f_n\xrightarrow{\mu}f
&\iff
\forall \varepsilon>0,
\lim_{n\to\infty}
\mu\left( \{|f_k-f|\geq \varepsilon\} \right) = 0\\
&\iff
\forall f_{n_k}\subset f_n,
\exists f_{n_{k_l}}\subset f_{n_k},
\text{ s.t. }
f_{n_{k_l}}\to f\text{ a.e. }\\
\\
\text{R.V. } X_n\xrightarrow{P} X
&\iff
\forall \varepsilon>0,
\lim_{n\to\infty}P\left(||X_n-X||\geq\varepsilon\right) = 0\\
&\iff
\forall X_{n_k}\subset X_n,
\exists X_{n_{k_l}}\subset X_{n_k},
\text{ s.t. }
X_{n_{k_l}}\to X\text{ a.s. }\
\\
\\
X_n\to X\text{ a.s. }
&\implies
X_n\xrightarrow{P} X
\end{aligned}
\]