组合数学做题笔记
记号与约定
| 记号 | 意义 |
|---|---|
| \(\mathbb{N}, \mathbf{N}\) | 非负整数集 |
| \(\mathbb{N}_+, \mathbf{N}_+\) | 正整数集 |
| \(\mathbb{Z}, \mathbf{Z}\) | 整数集 |
| \(\mathbb{Q}, \mathbf{Q}\) | 有理数集 |
| \(\mathbb{R}, \mathbf{R}\) | 实数集 |
| \(\mathbb{C}, \mathbf{C}\) | 复数集 |
| \(\sum\) | 求和 |
| \(\prod\) | 求积 |
题目
Elementary Combinatorics (基本组合)
难度为 [1] / [1+]
- [1] The number of subsets of an \(n\)-element set is \(2^n\).
这题的话,对每个元素单独讨论。每个元素有“选”与“不选”2种选择。总共有 \(n\) 个元素,乘法原理直接得到答案。
- [1] A composition of \(n\) is a sequence \(\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_k)\) of positive integers such that
\[\sum \alpha_i = n
\]
The number of compositions of \(n\) is \(2^{n−1}\).
这题的话,用插板法。
在 \(n\) 个数中随机插 \(i\) 个板子,所以为
\[\sum_{i=0}^{n-1}\binom {n-1} {i}=2^{n-1}
\]
- [1] If \(S\) is an \(n\)-element set, then let \(\displaystyle\binom {S} {k}\) denote the set of all \(k\)-element subsets of S. Let \(\displaystyle\binom {n}{k} = \#\binom {S}{k}\), the number ofk-subsets of an n-set. (Thus we are defining the binomial coefficient \(\displaystyle\binom {n}{k}\) combinatorially when \(n, k ∈ \mathbb N\).) Then
\[k !\binom n k=n(n-1) \cdots(n-k+1)
\]
(第7题[1+]题意相近)
暴力就行。\(\displaystyle\binom n k = \dfrac{\mathrm{A}_n^k}{\mathrm A_k^k}\),于是 \(k!\displaystyle\binom n k = \mathrm A_n^k = n(n-1) \cdots(n-k+1)\)。
- [1] Let \(m, n ≥ 0\). How many lattice paths are there from \((0, 0)\) to \((m, n)\), if each step in the path is either \((1, 0)\) or \((0, 1)\)?
每一步向上 / 右 走一步,走到 \((m,n)\),需要在 \((m+n)\) 次中选择 \(m\) 次走上。故有 \(\displaystyle\binom {n+m}m\) 种。
- [1] For \(n > 0\), \(\displaystyle2\binom {2n-1} n = \binom {2n} n\).
这里的话,我们暴力。
\[2\binom {2n-1} n=2 \frac{\displaystyle \prod_{i=n}^{2n-1}i}{n!}
\]
\[\begin{aligned}
\binom {2n} n=&\frac{\displaystyle \prod_{i=n+1}^{2n}i}{n!},\\
=&\frac{\displaystyle \prod_{i=n}^{2n-1}i}{n!\cdot n\div n}\cdot 2,\\
=&\frac{\displaystyle \prod_{i=n}^{2n-1}i}{n!}\cdot 2,\\
=&2\binom {2n-1} n.
\end{aligned}
\]
- [1+] For \(n ≥ 1\), \(\displaystyle\sum_{i=0}^{n}(-1)^i\binom n k = 0\).
暴力展开
\[\begin{aligned}
\sum_{i=0}^{n}(-1)^i\binom n k=&\sum_{i=0,2\mid i}^{n}\binom n k-\sum_{i=0,2\not\mid i}^{n}\binom n k,\\
=&\cdots\\
=&0.
\end{aligned}
\]
(反正中间经过一次分类讨论就可以做出来)

浙公网安备 33010602011771号