01 2019 档案
摘要:Logistic 回归 概述 Logistic 回归 或者叫逻辑回归 虽然名字有回归,但是它是用来做分类的。其主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式,以此进行分类。 须知概念 Sigmoid 函数 回归 概念 假设现在有一些数据点,我们用一条直线对这
阅读全文
摘要:朴素贝叶斯 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本章首先介绍贝叶斯分类算法的基础——贝叶斯定理。最后,我们通过实例来讨论贝叶斯分类的中最简单的一种: 朴素贝叶斯分类。 贝叶斯理论 & 条件概率 贝叶斯理论 我们现在有一个数据集,它由两类数据组成,数
阅读全文
摘要:算法杂货铺——k均值聚类(K-means) 4.1、摘要 在前面的文章中,介绍了三种常见的分类算法。分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的
阅读全文
摘要:算法杂货铺——分类算法之贝叶斯网络(Bayesian networks) 2.1、摘要 在上一篇文章中我们讨论了朴素贝叶斯分类。朴素贝叶斯分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立)。当这个条件成立时,朴素贝叶斯分类法的准确率是最高的,但不幸的
阅读全文
摘要:算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification) 0、写在前面的话 我个人一直很喜欢算法一类的东西,在我看来算法是人类智慧的精华,其中蕴含着无与伦比的美感。而每次将学过的算法应用到实际中,并解决了实际问题后,那种快感更是我在其它地方体会不到的。 一
阅读全文
摘要:算法杂货铺——分类算法之决策树(Decision tree) 3.1、摘要 在前面两篇文章中,分别介绍和讨论了朴素贝叶斯分类与贝叶斯网络两种分类算法。这两种算法都以贝叶斯定理为基础,可以对分类及决策问题进行概率推断。在这一篇文章中,将讨论另一种被广泛使用的分类算法——决策树(decision tre
阅读全文
摘要:KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法。 一句话总结:近朱者赤近墨者黑! k 近邻算法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类。k 近邻算法假设给定一个训练数据集,其
阅读全文
摘要:第1章 机器学习基础机器学习 概述机器学习(Machine Learning,ML) 是使用计算机来彰显数据背后的真实含义,它为了把无序的数据转换成有用的信息。是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 它是人工智能的核心,是使计算机具有智能的根...
阅读全文
摘要:决策树 概述 决策树(Decision Tree)算法是一种基本的分类与回归方法,是最经常使用的数据挖掘算法之一。我们这章节只讨论用于分类的决策树。 决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是 if-then 规则的集合,也可以认为是定义在特征空间与类空间上的
阅读全文
摘要:本篇主要是对第二章剩余知识的理解,包括:性能度量、比较检验和偏差与方差。在上一篇中,我们解决了评估学习器泛化性能的方法,即用测试集的“测试误差”作为“泛化误差”的近似,当我们划分好训练/测试集后,那如何计算“测试误差”呢?这就是性能度量,例如:均方差,错误率等,即“测试误差”的一个评价标准。有了评估
阅读全文
摘要:机器学习是目前信息技术中最激动人心的方向之一,其应用已经深入到生活的各个层面且与普通人的日常生活密切相关。本文为清华大学最新出版的《机器学习》教材的Learning Notes,书作者是南京大学周志华教授,多个大陆首位彰显其学术奢华。本篇主要介绍了该教材前两个章节的知识点以及自己一点浅陋的理解。 1
阅读全文
摘要:注释:基础不牢固,特别不牢固,项目无从下手! 这次花一个星期的时间把Python的基础库学习一下,一来总结过去的学习,二来为深度学习打基础。 部分太简单,或者映象很深的就不记录了,避免浪费时间。**博客园的makedown真是无语了,排版好久,上传就是这个鬼模样1. python基础(1).字符串print("abc".upper())#转为大写 print("ABC".lower()...
阅读全文
摘要:numpy.amin() 和 numpy.amax() numpy.amin() 用于计算数组中的元素沿指定轴的最小值。 numpy.amax() 用于计算数组中的元素沿指定轴的最大值。Notice:参数axis轴:对2维向量,行表示0轴,列表示1轴。numpy.ptp() numpy.ptp()函数计算数组中元素最大值与最小值的差(最大值 - 最小...
阅读全文
摘要:NumPy 排序、条件刷选函数 NumPy 提供了多种排序的方法。 这些排序函数实现不同的排序算法,每个排序算法的特征在于执行速度,最坏情况性能,所需的工作空间和算法的稳定性。 下表显示了三种排序算法的比较。 种类速度最坏情况工作空间稳定性 'quicksort'(快速排序) 1 O(n^2) 0
阅读全文
摘要:NumPy 矩阵库(Matrix)NumPy 中包含了一个矩阵库 numpy.matlib,该模块中的函数返回的是一个矩阵,而不是 ndarray 对象。一个 的矩阵是一个由行(row)列(column)元素排列成的矩形阵列。矩阵里的元素可以是数字、符号或数学式。以下是一个由 6 个数字元素构成的 2 行 3 列的矩阵:matlib.empty()matlib.empty() 函数返回一个新的矩阵...
阅读全文
摘要:Numpy 中包含了一些函数用于处理数组,大概可分为以下几类:修改数组形状翻转数组修改数组维度连接数组分割数组数组元素的添加与删除修改数组形状函数描述reshape不改变数据的条件下修改形状flat数组元素迭代器flatten返回一份数组拷贝,对拷贝所做的修改不会影响原始数组ravel返回展开数组'C' -- 按行,'F' -- 按列,'A' -- 原顺序,'k' -- 元素在内存中的出现顺序。翻...
阅读全文
摘要:Python IDE本文为大家推荐几款款不错的 Python IDE(集成开发环境),比较推荐 PyCharm,当然你可以根据自己的喜好来选择适合自己的 Python IDE。PyCharmPyCharm 是由 JetBrains 打造的一款 Python IDE。PyCharm 具备一般 Python IDE 的功能,比如:调试、语法高亮、项目管理、代码跳转、智能提示、自动完成、单元测试、版本控...
阅读全文
摘要:【第1章 绪论】1.1 引言学习算法:机器学习所研究的主要内容,是关于在计算机上从数据中产生“模型”的算法,即“学习算法”。学习算法的作用:1.基于提供的经验数据产生模型;2.面对新情况时,模型可提供相应的判断。模型:泛指从数据中学得的结果。学习器:学习算法在给定数据和参数空间上的实例化。 1.2 基本术语要进行机器学习,先要有数据。数据集:一组记录的...
阅读全文
摘要:机器学习分类:回归,分类 回归:最终得到的是在一个区间上真正(实际)的值 分类:最终得到的是个逻辑值0/1,是与不是,能与不能之类的答案 名词解释: 拟合:拟合就是把平面上一系列的点,用一条光滑的曲线连接起来。因为这条曲线有无数种可能,从而有各种拟合方法。拟合的曲线一般可以用函数表示,根据这个函数的
阅读全文
摘要:这些函数在字符数组类(numpy.char)中定义。 函数描述 add() 对两个数组的逐个字符串元素进行连接 multiply() 返回按元素多重连接后的字符串 center() 居中字符串 capitalize() 将字符串第一个字母转换为大写 title() 将字符串的每个单词的第一个字母转换
阅读全文
摘要:Numpy 中包含了一些函数用于处理数组,大概可分为以下几类: 1.修改数组形状 函数描述 reshape 不改变数据的条件下修改形状 flat 数组元素迭代器 flatten 返回一份数组拷贝,对拷贝所做的修改不会影响原始数组 ravel 返回展开数组 函数描述 reshape 不改变数据的条件下
阅读全文

浙公网安备 33010602011771号