import numpy as np
x=np.random.randint(0,34,20)
y=np.zeros(20)
k=3
def initcenter(x,k):
return x[0:k].reshape(k)
def nearest(kc,i):
d=(abs(kc-i))
w=np.where(d==np.min(d))
return w[0][0]
def xclassify(x,y,kc):
for i in range(x.shape[0]):
y[i]=nearest(kc,x[i])
return y
def kcmean(x,y,kc,k):
l=list(kc)
flag=False
for c in range(k):
m=np.where(y==c)
n=np.mean(x[m])
if l[c]!=n:
l[c]=nflag=True
return(np.array(l),flag)
kc=initcenter(x,k)
flag=True
print(x,y,kc,flag)
while flag:
y=xclassify(x,y,kc)
kc,flag=kcmean(x,y,kc,k)
print(y,kc)