摘要:
在开发医疗保险欺诈识别监测模型时,特征工程是一个关键的步骤,它有助于提取、转换和选择最相关的特征,以改善模型的性能。以下是在开发医疗保险欺诈识别监测模型时进行特征工程的一些建议: 基本特征提取: 提取基本的医疗保险相关特征,如就医次数、就医地点、就医科室、医疗费用等。 时序特征: 如果数据包含时间信 阅读全文
posted @ 2024-01-12 21:36
STDU_DREAM
阅读(325)
评论(0)
推荐(0)
摘要:
数据集加载: 使用工具如Pandas库加载数据。使用pd.read_csv()等函数加载数据集到DataFrame。 初步数据探索: 使用head()、info()、describe()等方法查看数据的前几行、基本信息和统计摘要。 使用shape属性获取数据集的大小。 处理缺失值: 使用isnull 阅读全文
posted @ 2024-01-12 21:28
STDU_DREAM
阅读(452)
评论(0)
推荐(0)
摘要:
以下是开发医疗保险欺诈识别监测模型的一般性步骤: 数据集分析与预处理: 对给定的16000条数据集进行初步分析,了解数据的结构、特征。 进行数据清洗,处理缺失值、异常值等。 进行多维特征信息分析,以了解医疗保险欺诈的潜在特征。 特征工程: 提取能够描述医疗保险欺诈的特征因子集合。这可能需要领域专业知 阅读全文
posted @ 2024-01-12 21:27
STDU_DREAM
阅读(857)
评论(1)
推荐(0)

浙公网安备 33010602011771号