实验6:开源控制器实践——RYU

一、实验目的

能够独立部署RYU控制器;
能够理解RYU控制器实现软件定义的集线器原理;
能够理解RYU控制器实现软件定义的交换机原理。

二、实验环境

(一)基本要求

下载虚拟机软件Oracle VisualBox或VMware;
在虚拟机中安装Ubuntu 20.04 Desktop amd64,并完整安装Mininet;

三、实验要求

1.搭建下图所示SDN拓扑,协议使用Open Flow 1.0,并连接Ryu控制器。

  • 在对应文件夹下执行ryu-manager gui_topology.py --observe-links启动控制器

 

 

使用命令sudo mn --topo=single,3 --mac --controller=remote,ip=127.0.0.1,port=6633 --switch ovsk,protocols=OpenFlow10搭建上述拓扑

2.通过Ryu的图形界面查看网络拓扑

 

 

 

3.阅读Ryu文档的The First Application一节,运行并使用 tcpdump 验证L2Switch,分析和POX的Hub模块有何不同。

  • 创建L2Switch.py文件,并保存在目录/home/用户名/学号/lab6/中
  •  

     h1 ping h2

  •  

     h1 ping h3

  •  

     由图可见,h1 ping h2时h3也能收到数据包,h1 ping h3时h2也能收到数据包,说明L2Switch模块的功能同hub模块:为每一个交换机建立通配的洪泛规则,让交换机拥有集线器的功能

    • 分析和POX的Hub模块有何不同

      1.查看下发流表dpctl dump-flows

      2.运行ryuryu-manager L2Switch.py

      3.运行pox(Hub模块)./pox.py log.level --DEBUG forwarding.hub

      无法查看L2Switch下发的流表,而hub模块下发的流表可以查看

    •  

       编程修改L2Switch.py,另存为L2xxxxxxxxx.py,使之和POX的Hub模块的变得一致(xxxxxxxxx
      为学号)

    • (二)进阶要求

      阅读Ryu关于simple_switch.py和simple_switch_1x.py的实现,以simple_switch_13.py为例,完成其代码的注释工作,并回答下列问题:

    • # Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
      #
      # Licensed under the Apache License, Version 2.0 (the "License");
      # you may not use this file except in compliance with the License.
      # You may obtain a copy of the License at
      #
      #    http://www.apache.org/licenses/LICENSE-2.0
      #
      # Unless required by applicable law or agreed to in writing, software
      # distributed under the License is distributed on an "AS IS" BASIS,
      # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      # implied.
      # See the License for the specific language governing permissions and
      # limitations under the License.
      
      # 引入包
      from ryu.base import app_manager
      from ryu.controller import ofp_event
      from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
      from ryu.controller.handler import set_ev_cls
      from ryu.ofproto import ofproto_v1_3
      from ryu.lib.packet import packet
      from ryu.lib.packet import ethernet
      from ryu.lib.packet import ether_types
      
      
      class SimpleSwitch13(app_manager.RyuApp):
          # 指定OpenFlow版本为1.3
          OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]
      
          def __init__(self, *args, **kwargs):
              super(SimpleSwitch13, self).__init__(*args, **kwargs)
              self.mac_to_port = {} # 一个保存(交换机id, mac地址)到转发端口的字典
      
          # 处理EventOFPSwitchFeatures事件
          @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
          def switch_features_handler(self, ev):
              datapath = ev.msg.datapath
              ofproto = datapath.ofproto
              parser = datapath.ofproto_parser
      
              # install table-miss flow entry
              #
              # We specify NO BUFFER to max_len of the output action due to
              # OVS bug. At this moment, if we specify a lesser number, e.g.,
              # 128, OVS will send Packet-In with invalid buffer_id and
              # truncated packet data. In that case, we cannot output packets
              # correctly.  The bug has been fixed in OVS v2.1.0.
              match = parser.OFPMatch()#match:流表项匹配,OFPMatch():不匹配任何信息
              actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                              ofproto.OFPCML_NO_BUFFER)]
              self.add_flow(datapath, 0, match, actions)#添加流表项
      
          # 添加流表
          def add_flow(self, datapath, priority, match, actions, buffer_id=None):
              # 获取交换机信息
              ofproto = datapath.ofproto
              parser = datapath.ofproto_parser
      
              # 包装action 
              inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                                 actions)]
              # 判断是否有buffer_id,生成相应的mod对象
              if buffer_id:
                  mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                          priority=priority, match=match,
                                          instructions=inst)
              else:
                  mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                          match=match, instructions=inst)
              # 发送mod
              datapath.send_msg(mod)
      
          # 触发packet in事件时,调用_packet_in_handler函数
          @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
          def _packet_in_handler(self, ev):
              # If you hit this you might want to increase
              # the "miss_send_length" of your switch
              if ev.msg.msg_len < ev.msg.total_len:
                  self.logger.debug("packet truncated: only %s of %s bytes",
                                  ev.msg.msg_len, ev.msg.total_len)
              # 获取Packet_In报文中的各种信息:包信息,交换机信息,协议等等
              msg = ev.msg
              datapath = msg.datapath
              ofproto = datapath.ofproto
              parser = datapath.ofproto_parser
              in_port = msg.match['in_port']
      
              pkt = packet.Packet(msg.data)
              eth = pkt.get_protocols(ethernet.ethernet)[0]
      
              # 忽略LLDP类型
              if eth.ethertype == ether_types.ETH_TYPE_LLDP:
                  # ignore lldp packet
                  return
      
              # 获取源端口,目的端口
              dst = eth.dst
              src = eth.src
      
              dpid = format(datapath.id, "d").zfill(16)
              self.mac_to_port.setdefault(dpid, {})
      
              self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)
      
              # 学习包的源地址,和交换机上的入端口绑定
              # learn a mac address to avoid FLOOD next time.
              self.mac_to_port[dpid][src] = in_port
      
              # 在字典中查找目的mac地址是否有对应的出端口 
              if dst in self.mac_to_port[dpid]:
                  out_port = self.mac_to_port[dpid][dst]
              # 没有就进行洪泛
              else:
                  out_port = ofproto.OFPP_FLOOD
      
              actions = [parser.OFPActionOutput(out_port)]
      
              # 下发流表处理后续包,不再触发 packet in 事件
              # install a flow to avoid packet_in next time
              if out_port != ofproto.OFPP_FLOOD:
                  match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
                  # verify if we have a valid buffer_id, if yes avoid to send both
                  # flow_mod & packet_out
                  if msg.buffer_id != ofproto.OFP_NO_BUFFER:
                      self.add_flow(datapath, 1, match, actions, msg.buffer_id)
                      return
                  else:
                      self.add_flow(datapath, 1, match, actions)
              data = None
              if msg.buffer_id == ofproto.OFP_NO_BUFFER:
                  data = msg.data
              # 发送Packet_out数据包
              out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                        in_port=in_port, actions=actions, data=data)
              # 发送流表
              datapath.send_msg(out)

      a) 代码当中的mac_to_port的作用是什么?
      答:保存mac地址到交换机端口的映射
      b) simple_switch和simple_switch_13在dpid的输出上有何不同?
      答:simple_switch直接输出dpid,simple_switch_13会在不满16位的dpid前补0直到满16位
      c) 相比simple_switch,simple_switch_13增加的switch_feature_handler实现了什么功能?
      答:switch_features_handler函数是新增缺失流表项到流表中,当封包没有匹配到流表时,就触发packet_in
      d) simple_switch_13是如何实现流规则下发的?
      答:在接收到packetin事件后,首先获取包学习,交换机信息,以太网信息,协议信息等。如果以太网类型是LLDP类型,则不予处理。如果不是,则获取源端口目的端口,以及交换机id,先学习源地址对应的交换机的入端口,再查看是否已经学习目的mac地址,如果没有则进行洪泛转发。如果学习过该mac地址,则查看是否有buffer_id,如果有的话,则在添加流动作时加上buffer_id,向交换机发送流表。
      e) switch_features_handler和_packet_in_handler两个事件在发送流规则的优先级上有何不同?
      答:switch_features_handler下发流表的优先级高于_packet_in_handler。

      • 实验心得

      • 在本次实验中,通过阅读RYU文档并查看相关模块的源代码,了解了RYU控制器的工作原理,并比较了RYU的L2Switch模块与POX的Hub模块的异同。本次的实验基础部分难度较低,最开始安装RYU时,基本上根据老师的实验指导书一步一步来,即可顺利完成,同时实验操作与前两次操作ODL和POX控制器差不多,因此能较为快速地完成对应步骤,而进阶部分则难度较大,尤其在阅读源码部分进度较慢。不过,虽然阅读源码的过程有些痛苦,但在过程中,查阅相关材料,结合源码进行阅读,也使得我对RYU的控制机制有了更为形象和深入的认识
      • 在实验过程中遇到的问题及解决

 

posted @ 2022-10-10 23:51  王耶  阅读(128)  评论(0编辑  收藏  举报