合集-第九章习题加例题

摘要:点击查看代码 from scipy.stats import expon, gamma import pylab as plt x = plt.linspace(0, 3, 100) L = [1/3, 1, 2] s1 = ['*-', '.-', 'o-'] s2 = ['$\\theta=\\ 阅读全文
posted @ 2024-11-26 14:28 等我刷把宗师 阅读(24) 评论(0) 推荐(0)
摘要:点击查看代码 import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm # 生成 x 值 x = np.linspace(-2, 2, 100) # 定义标准差列表 L = [1/2, 1, 2] 阅读全文
posted @ 2024-11-26 14:32 等我刷把宗师 阅读(33) 评论(0) 推荐(0)
摘要:点击查看代码 import numpy as np import pandas as pd import scipy.stats as ss import statsmodels.api as sm import matplotlib.pyplot as plt plt.rcParams['font 阅读全文
posted @ 2024-11-26 22:02 等我刷把宗师 阅读(29) 评论(0) 推荐(0)
摘要:点击查看代码 import numpy as np import pandas as pd import statsmodels.api as sm import matplotlib.pyplot as plt # 读取数据 df = pd.read_excel('F:\python数学建模与算法 阅读全文
posted @ 2024-11-26 22:04 等我刷把宗师 阅读(21) 评论(0) 推荐(0)
摘要:点击查看代码 import numpy as np import pandas as pd import scipy.stats as ss import statsmodels.api as sm data = np.loadtxt('F:\python数学建模与算法\源程序\《Python数学建 阅读全文
posted @ 2024-12-03 17:59 等我刷把宗师 阅读(22) 评论(0) 推荐(0)
摘要:点击查看代码 import numpy as np import statsmodels.api as sm data = np.loadtxt('F:\python数学建模与算法\源程序\《Python数学建模算法与应用》程序和数据\第9章 数据的描述性统计方法/ti9_5.txt') x1 = 阅读全文
posted @ 2024-12-03 18:02 等我刷把宗师 阅读(13) 评论(0) 推荐(0)