[数据结构与算法-16]树的同构
树的同构
1. 同构树
TreeA和TreeB为同构树,当且仅当存在从TreeA到TreeB的一一映射\(f(a)\)。
\[f(node[a_i]) = node[b_i]
\]

对于以上的树,有映射关系
| TreeA | TreeB |
|---|---|
| 0 | 2 |
| 1 | 0 |
| 2 | 3 |
| 3 | 1 |
2. 同构有根树
TreeA和TreeB为同构树的基础上还要求根节点一致。
3. 同构二叉树
TreeA和TreeB为同构有根树的基础上还要求左右子节点一致。
例题
7-3 树的同构 (25 分)
给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
图1
图2 现给定两棵树,请你判断它们是否是同构的。
输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。
输入样例1(对应图1):
8 A 1 2 B 3 4 C 5 - D - - E 6 - G 7 - F - - H - - 8 G - 4 B 7 6 F - - A 5 1 H - - C 0 - D - - E 2 -输出样例1:
Yes输入样例2(对应图2):
8 B 5 7 F - - A 0 3 C 6 - H - - D - - G 4 - E 1 - 8 D 6 - B 5 - E - - H - - C 0 2 G - 3 F - - A 1 4输出样例2:
No
对于样例一,画出给出的两棵树

思路
-
特殊情况
-
若两棵树均为空树,二者同构
-
若两棵树节点数不同,二者不同构
-
-
一般情况
-
保证对应节点的子节点均相同
-
两棵树的根节点应相同
-
#include <iostream>
using namespace std;
struct node {
char number = NULL;
int l = -1;
int r = -1;
int len = NULL;
};
int K;
char temp;
bool visA[10], visB[10];
// 建树
node* buildTree(int);
// 释放内存
void destroyTree(node*);
// 判断同构
bool isomorphism(node*, node*);
int main() {
node* TreeA, * TreeB;
bool* visA, * visB;
cin >> K;
TreeA = buildTree(K);
cin >> K;
TreeB = buildTree(K);
if (TreeA == NULL && TreeB == NULL)
cout << "Yes" << endl;
else if (isomorphism(TreeA, TreeB))
cout << "Yes" << endl;
else
cout << "No" << endl;
destroyTree(TreeA);
destroyTree(TreeB);
}
node* buildTree(int K) {
// 空树
if (K == 0) return NULL;
// 非空
node* tree = new node[K];
tree->len = K; // K个节点
for (int i = 0; i < K; i++) {
cin >> (tree + i)->number;
// 读取左子节点
cin >> temp;
if (temp != '-')
(tree + i)->l = int(temp - '0');
// 读取右子节点
cin >> temp;
if (temp != '-')
(tree + i)->r = int(temp - '0');
}
return tree;
}
void destroyTree(node* tree) {
delete[] tree;
tree = NULL;
}
bool isomorphism(node* TreeA, node* TreeB) {
// 空树
if (TreeA->len != TreeB->len)
return 0;
// 单节点
if (TreeA->len == 1 && TreeB->len == 1)
if (TreeA->number == TreeB->number)
return 1;
else
return 0;
for (int i = 0; i < (TreeA->len); i++) {
char ch = (TreeA + i)->number;
// 标记遍历过的TreeA的节点
visA[i] = 1;
for (int j = 0; j < (TreeB->len); j++) {
if (ch == (TreeB+j)->number) {
if ( // 左右皆空
(((TreeA + i)->l == -1 && (TreeB + j)->l == -1)
&&
((TreeA + i)->r == -1 && (TreeB + j)->r == -1))
|| // 单边为空
(((TreeA + i)->l == -1 && (TreeB + j)->l == -1)
&&
((TreeA + (TreeA + i)->r)->number == (TreeB + (TreeB + j)->r)->number))
||
(((TreeA + i)->l == -1 && (TreeB + j)->l == -1)
&&
((TreeA + (TreeA + i)->r)->number == (TreeB + (TreeB + j)->r)->number))
||
(((TreeA + i)->l == -1 && (TreeB + j)->r == -1)
&&
((TreeA + (TreeA + i)->r)->number == (TreeB + (TreeB + j)->l)->number))
||
(((TreeA + i)->r == -1 && (TreeB + j)->l == -1)
&&
((TreeA + (TreeA + i)->l)->number == (TreeB + (TreeB + j)->r)->number))
|| // 无空
(((TreeA + (TreeA + i)->l)->number == (TreeB + (TreeB + j)->l)->number)
&&
((TreeA + (TreeA + i)->r)->number == (TreeB + (TreeB + j)->r)->number))
||
(((TreeA + (TreeA + i)->r)->number == (TreeB + (TreeB + j)->l)->number)
&&
((TreeA + (TreeA + i)->l)->number == (TreeB + (TreeB + j)->r)->number))
) {
// 标记遍历过的TreeB的节点
visB[j] = 1;
}
else
return 0;
}
}
}
// 最终TreeA未标记的节点就是TreeA的根节点
// 最终TreeB未标记的节点就是TreeB的根节点
for (int i = 0; i < (TreeA->len); i++)
for (int j = 0; j < (TreeB->len); j++)
if (visA[i] == 0 && visB[j] == 0)
// 比较两个根节点
if ((TreeA + i)->number != (TreeB + j)->number)
return 0;
return 1;
}

浙公网安备 33010602011771号