原根
阶
定义
一般的:
群 \(G\) 的阶是它的元素个数,记为\(|G|\) 。
群内元素 \(x\) 的阶是最小的正整数 \(n\) 使 \(x^n=e\) 。
这里的阶是模 \(m\) 简化剩余系关于乘法组成的群中,元素 \(a\) 的阶,记为 \(\delta_m(a)\) 。
性质
- \(\forall i,j\in \left[ 1,\delta_m(a) \right]\) 且 \(i,j\in \mathbb{Z}\) 都有 \(a^i\not\equiv a^j\pmod m\) 。
证明(反证法):
设 \(i\ne j\) 且 \(a^i \equiv a^j\pmod m\) 时
\(a^{|i-j|} \equiv 1\pmod m\)
\(0<|i-j|<\delta_m(a)\)
与阶定义不符,得证。
- \(a^n\equiv 1 \pmod m\) 则 \(\delta_m(a)\mid n\) 。
证明(反证法):
设\(\delta_m(a) \not\mid n\)
\(n=k\delta_m(a)+b,0\le b< \delta_m(a)(k,b\in \mathbb{Z})\)
\(\because a^{\delta_m(a)} \equiv 1\pmod m,a^{k\delta_m(a)+b}\equiv 1 \pmod m\)
\(\therefore a^b \equiv 1 \pmod m\)
\(b<\delta_m(a)\) 与阶定义不符,得证。
- 若 \(m\in \mathbb{N^*},a,b\in \mathbb{Z},(a,m)=(b,m)=1\) ,
则 \(\delta_m(ab)=\delta_m(a)\delta_m(b)\) 的充要条件是 \((\delta_m(a),\delta_m(b))=1\) 。
证明:
充分性:
\(\because a^{\delta_m(a)}\equiv 1\pmod m,b^{\delta_m(b)}\equiv 1\pmod m\)
\(\therefore (ab)^{[\delta_m(a),\delta_m(b)]} \equiv 1\pmod m\)
\(\delta_m(ab) \mid [\delta_m(a),\delta_m(b)]\)
\(\delta_m(a)\delta_m(b) \mid [\delta_m(a),\delta_m(b)]\)
\(\therefore (\delta_m(a),\delta_m(b))=1\)
必要性:
\(\because (ab)^{\delta_m(ab)} \equiv 1\pmod m\)
\(\therefore (ab)^{\delta_m(ab)\delta_m(b)} \equiv 1\pmod m\)
即 \(a^{\delta_m(ab)\delta_m(b)} \equiv 1\pmod m\)
\(\therefore \delta_m(a) \mid \delta_m(ab)\delta_m(b)\)
又 \(\because (\delta_m(a),\delta_m(b))=1\)
\(\therefore \delta_m(a) \mid \delta_m(ab)\)
同理 \(\delta_m(b) \mid \delta_m(ab)\)
\(\therefore \delta_m(a)\delta_m(b) \mid \delta_m(ab)\)
由 \(\delta_m(ab) \mid [\delta_m(a),\delta_m(b)]\)
得 \(\delta_m(ab)=\delta_m(a)\delta_m(b)\)
- 若 \(k\in \mathbb{N},m\in \mathbb{N^*},a\in \mathbb{Z},(a,m)=1\)
则\[\delta_m(a^k)=\frac{\delta_m(a)}{(\delta_m(a),k)} \]
证明:
\(a^{k\delta_m(a^k)} \equiv 1\pmod m\)
\(\delta_m(a) \mid k\delta_m(a^k)\)
\(\frac{\delta_m(a)}{(\delta(a),k)} \mid \delta_m(a^k)\)
\((a^k)^{\frac{\delta_m(a)}{(\delta(a),k)}} \equiv 1 \pmod m\)
\(\delta_m(a^k) \mid \frac{\delta_m(a)}{(\delta(a),k)}\)
\(\therefore \delta_m(a^k)=\frac{\delta_m(a)}{(\delta_m(a),k)}\)
原根
定义
若 \(m\in\mathbb{N^*},g\in \mathbb{Z},(g,m)=1,\delta_m(g)=\varphi(m)\) 。
则 \(g\) 为模 \(m\) 的原根。
判定
若 \(m \ge 3,g \in\mathbb{Z},(g,m)=1\) 且 \(\forall p\mid \varphi(m)\),\(p\) 为素数,都有 \(a^{\frac{\varphi(m)}{p}} \not\equiv 1 \pmod m\) 。
原根个数
模数 \(m\) 有原根 \(g\) ,\(\forall d \mid \varphi(m)\),模 \(m\) 的 \(d\) 阶元素有 \(\varphi(d)\) 个。
证明:
设 \(d'=\frac{\varphi(m)}{d}\)
\(\delta_m(g^{d'})=\frac{\delta_m(g)}{(d',\delta_m(g))}=d\)
设 \(a=g^{d'}\)
\(\delta_m(a^k)=\frac{\delta_m(a)}{(\delta_m(a),k)}=\frac{d}{(d,k)}\)
当且仅当 \((\delta_m(a),k)=1\) 时,\(\delta_m(a^k)=\delta_m(a)=d\)
所以模 \(m\) 的 \(d\) 阶元素有 \(\varphi(d)\) 个