// 面试题36:二叉搜索树与双向链表
// 题目:输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表。要求
// 不能创建任何新的结点,只能调整树中结点指针的指向。
#include <iostream>
#include "BinaryTree.h"
//这个程序看的我真的是头大如牛
void ConvertNode(BinaryTreeNode* pNode, BinaryTreeNode** pLastNodeInList);
BinaryTreeNode* Convert(BinaryTreeNode* pRootOfTree)
{
BinaryTreeNode *pLastNodeInList = nullptr;
ConvertNode(pRootOfTree, &pLastNodeInList);//看这个核心代码
// pLastNodeInList指向双向链表的尾结点,我们需要返回头结点
BinaryTreeNode *pHeadOfList = pLastNodeInList;
while (pHeadOfList != nullptr && pHeadOfList->m_pLeft != nullptr)
pHeadOfList = pHeadOfList->m_pLeft;
return pHeadOfList;
}
void ConvertNode(BinaryTreeNode* pNode, BinaryTreeNode** pLastNodeInList)
{
if (pNode == nullptr)
return;
BinaryTreeNode *pCurrent = pNode;
if (pCurrent->m_pLeft != nullptr)//找到当前树的最小节点
ConvertNode(pCurrent->m_pLeft, pLastNodeInList);
pCurrent->m_pLeft = *pLastNodeInList;//当前树根的左孩子,指向左孩子子树的最小值
if (*pLastNodeInList != nullptr)
(*pLastNodeInList)->m_pRight = pCurrent;//把左孩子的m_pRight指向当前树根
*pLastNodeInList = pCurrent;
if (pCurrent->m_pRight != nullptr)//继续把右面调整好
ConvertNode(pCurrent->m_pRight, pLastNodeInList);
}
// ====================测试代码====================
void PrintDoubleLinkedList(BinaryTreeNode* pHeadOfList)
{
BinaryTreeNode* pNode = pHeadOfList;
printf("The nodes from left to right are:\n");
while (pNode != nullptr)
{
printf("%d\t", pNode->m_nValue);
if (pNode->m_pRight == nullptr)
break;
pNode = pNode->m_pRight;
}
printf("\nThe nodes from right to left are:\n");
while (pNode != nullptr)
{
printf("%d\t", pNode->m_nValue);
if (pNode->m_pLeft == nullptr)
break;
pNode = pNode->m_pLeft;
}
printf("\n");
}
void DestroyList(BinaryTreeNode* pHeadOfList)
{
BinaryTreeNode* pNode = pHeadOfList;
while (pNode != nullptr)
{
BinaryTreeNode* pNext = pNode->m_pRight;
delete pNode;
pNode = pNext;
}
}
void Test(const char* testName, BinaryTreeNode* pRootOfTree)
{
if (testName != nullptr)
printf("%s begins:\n", testName);
PrintTree(pRootOfTree);
BinaryTreeNode* pHeadOfList = Convert(pRootOfTree);
PrintDoubleLinkedList(pHeadOfList);
}
// 10
// / \
// 6 14
// /\ /\
// 4 8 12 16
void Test1()
{
BinaryTreeNode* pNode10 = CreateBinaryTreeNode(10);
BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
BinaryTreeNode* pNode14 = CreateBinaryTreeNode(14);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode8 = CreateBinaryTreeNode(8);
BinaryTreeNode* pNode12 = CreateBinaryTreeNode(12);
BinaryTreeNode* pNode16 = CreateBinaryTreeNode(16);
ConnectTreeNodes(pNode10, pNode6, pNode14);
ConnectTreeNodes(pNode6, pNode4, pNode8);
ConnectTreeNodes(pNode14, pNode12, pNode16);
Test("Test1", pNode10);
DestroyList(pNode4);
}
// 5
// /
// 4
// /
// 3
// /
// 2
// /
// 1
void Test2()
{
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
ConnectTreeNodes(pNode5, pNode4, nullptr);
ConnectTreeNodes(pNode4, pNode3, nullptr);
ConnectTreeNodes(pNode3, pNode2, nullptr);
ConnectTreeNodes(pNode2, pNode1, nullptr);
Test("Test2", pNode5);
DestroyList(pNode1);
}
// 1
// \
// 2
// \
// 3
// \
// 4
// \
// 5
void Test3()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
ConnectTreeNodes(pNode1, nullptr, pNode2);
ConnectTreeNodes(pNode2, nullptr, pNode3);
ConnectTreeNodes(pNode3, nullptr, pNode4);
ConnectTreeNodes(pNode4, nullptr, pNode5);
Test("Test3", pNode1);
DestroyList(pNode1);
}
// 树中只有1个结点
void Test4()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
Test("Test4", pNode1);
DestroyList(pNode1);
}
// 树中没有结点
void Test5()
{
Test("Test5", nullptr);
}
int main(int argc, char* argv[])
{
Test1();
Test2();
Test3();
Test4();
Test5();
system("pause");
return 0;
}