SG函数
SG函数
一种用于确定一个博弈是否有必胜方法的函数
必胜点(P):在这一点,若双方都采取最优操作,必胜。 必败点(N)同理。
- 注:若一个点存在一个操作(道路)可以达到比必败点,则这个点是必胜点,否则是必败点。
 
核心:从最终结果逆推。
举个栗子:。
请问:当N、M满足什么条件时先手必胜?```
   
   如图,由必胜点和必败点的关系可无限拓展。
###SG函数
* SG(x)=mex{SG(xi)},xi为x的(多个)后续状态
mex函数:mex{x1,x2,……xn}表示不在集合中且最小的非负整数。如mex{1,2,5}=0,记mex{}=0.
举例:
```有n个石子,一次只能取出1、3、4个,两人轮流取,首先取完石子的获胜```
 
   
   如图,同上,若一个点存在一个操作(道路)可以达到比必败点,则这个点是必胜点,否则是必败点。直观的,若SG大于0,则为必胜点。
### 代码实现:
```{
int cmd[n]; //每个元素代表一个操作
int SG[a];   
int mex[b]; //用于标记mex函数中已经出现的整数
int *sg()  
{
    menset(SG,0,sizeof(SG));  
    int i,j;  
    for(i=1;i<a;i++)  //从1开始因为SG[0]=0
    {  
        menset(mex,0,sizeof(mex)); //每次都要初始化标记
        for(j=0;j<n&&cmd[j]<=i;j++)
        {
            mex[SG[ i-cmd[j] ]=1; //标记
        }
        for(i=0;i<b;i++)
        {
            if(!mex[i]) //找到第一个不被标记(未出现)的的整数i
                SG[i]=i;
        }
    }
   return SG;
}
                    
                
                
            
        
浙公网安备 33010602011771号